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1.0 SUMMARY

1.1 Contract Description

This contract focused on the physics of novel phase-conjugators. Progress was
made towards the development of a fiber version of our phase-conjugate gyro. This
involved both theoretical and experimental studies of photorefractive phenomena and
novel phase conjugators, especially mutually pumped phase conjugators (MPPC's). With a
coupled-mode theory of the hologram sharing model we have been able to accurately
describe the formation process of gratings in the MPPC and have provided a quantitative
explanation as to why phase conjugation occurs in an MPPC. A study of the effects of
seeding a mutually pumped phase conjugator was performed to further our understanding
of the grating formation mechanism in this important class of phase conjugators. Also
considered under this contract were issues related to long-term optical storage in
photorefractive media. In particular, the diffraction properties of fixed gratings in
photorefractive media were examined in the context of their possible use in both optical
memory systems and optical pattern classifiers.

1.2 Scientific Problem

Optical phase conjugation has been investigated extensively for the purpose of
wavefront aberration correction. Under contract No. N00014-85-C-0219 we demon-
strated the first phase-conjugate fiber-optic gyro (PCFOG) and its ability to use low cost
multimode fiber components. Key to the success of this effort was the use of a new
class of phase conjugators (mutually pumped conjugators) that have the ability to operate
with mutually incoherent beams at milliwatt power levels. Performance of the gyro was
found to be limited by an unacceptable amount of noise in the PCFOG beat signal.
Measurements indicated that this noise was associated with the use of bulk-optic
components in the setup. To reduce the amount of noise present in the gyro we have
constructed, under this contract, an all-fiber PCFOG using a low-cost single mode diode
laser (operating at 830 nm) as the optical source. Difficulties in obtaining operation of

2}

the conjugator at 830 nm with only 200 uW of optical power from the fiber precluded
measurements of the noise characteristics on this gyro.

1
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Also investigated under this contract have been issues related to the grating
formation mechanism in MPPC's, including the effects of seeding the grating formation
process. As a result of our work we now have a clearer understanding of this important
class of phase conjugators. The diffraction properties of both fixed and photoinduced
gratings in photorefractive media have been examined in the context of their use in
optical memory systems and optical pattern classifiers. Both of these devices have come
under increased scrutiny in recent years as a result of growing interest in optical
computing.

1.3 Progress Summary

There have been many areas of significant progress achieved under this
contract. They include:

. Construction of an all-fiber PCFOG.

. Experimental and theoretical investigation of the effects of seeding on
the phase of the grating in an MPPC.

. Development of a model to provide a quantitative basis for the hologram
sharing model of MPPC formation.

. Formation of an analytical model to solve the interaction of N mutually
incoherent pairs of beams in a photorefractive medium.

. Modeling the diffraction properties of photorefractive media with fixed
gratings.

. Experimental and theoretical studies of the diffraction efficiency of
strong volume holograms written in photorefractive media.

. Implementation of a novel optical learning machine using the Perceptron
. algorithm for pattern recognition.

2
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Details of this progress are presented in Section 2.0, and in the publications
included in this report as Appendices.

1.4 Publications and Presentations

Publications

"Seeding and Grating Phase in Mutually Pumped Phase Conjugators,"” W.R. Christian,
R. Saxena, and I. McMichael, submitted to J. Opt. Soc. Am. B (1991).

* "Diffraction Properties of Fixed Gratings in Photorefractive Media," Claire Gu and
Pochi Yeh, J. Opt. Soc. Am. B 7, 2339 (1990).

* "Diffraction Properties of Multiple-Beam Photorefractive Gratings," R. Saxena,
F. Vachss, I. McMichael, and Pochi Yeh, J. Opt. Soc. Am. B 7, 1210 (1990).

* "Optical Pattern Classifier with Perceptron Learning," J. H. Hong, S. Campbell, and
Pochi Yeh, Appl. Opt. 29, 3019 (1990).

* "Diffraction Efficiency of Strong Volume Holograms," J. H. Hong, Pochi Yeh,
D. Psaltis and D. Brady, Opt. Lett. 15, 344 (1990).

* "Coupled-Mode Theory of Hologram Sharing in Mutually Pumped Phase Conjugators,"
Pochi Yeh, Appl. Opt. 28, 1961 (1989).

* "Two-Wave Mixing in Nonlinear Media," Pochi Yeh, [EEE J. Quantum Electron. 25, 484
(1989).

Presentations

"Grating Phase in Mutually Pumped Phase Conjugators,"” W. Christian, R. Saxena, and
I. McMichael, presented at the Annual Meeting of the Optical Society of America,
Orlando, Florida, October 15-20, 1990.

"Phase-Conjugate Interferometry,” I. McMichael, presented at the Conference on
Nonlinear Optics, Kauai, Hawaii, July 16-20, 1990.

"Seeded Mutually Pumped Phase Conjugators,” W. Christian, R. Saxena, and
I. McMichael, presented at the Conference on Lasers and Electro-Optics, Anaheim,
CA’ May 21-25’ 1990-

"Phase Conjugate Fiber-Optic Gyros," 1. McMichael, W. Christian, P. Beckwith,
M. Khoshnevisan and Pochi Yeh, presented at Photorefractive Materials, Effects and
Devices II, Ausois, France, January 17-19, 1990.

"Polarization-Preserving Phase Conjugators," I. McMichael, P. Beckwith and
Pochi Yeh, presented at O-E LASE'89, Los Angeles, CA, January 15-20, 1989.
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"Multimode Fiber Gyro Using a Mutually Pumped Conjugator,” lan McMichael,
Paul Beckwith, and Pochi Yeh, presented at the Annual Meeting of the Optical Society
of America, Santa Clara, CA, October 31 - November 4, 1988.

* "Recent Advances in Photorefractive Nonlinear Optics," Pochi Yeh, invited paper
presented at the Laser Materials and Laser Spectroscopy Meeting, Shanghai, China,
July 25 (1988).

* Works only partially supported by this contract.
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2.0 PROGRESS

2.1 Phase-Conjugate Fiber-Optic Gyros

Under this contract we demonstrated that the correction of modal scrambling
by phase-conjugation allows tor the construction of fiber gyros using multimode fibers.
In this section we review our progress in this area and we describe the construction of an
all fiber device using a diode laser. Difficulties in obtaining operation of the mutually
pumped phase conjugator at diode laser wavelengths precluded measurements of the all-
fiber gyro's sensitivity.

Phase-conjugate fiber-optic gyros (PCFOG's) use phase conjugation to
compensate for reciprocal phase changes due to thermal and mechanical effects on the
fiber, while at the same time allowing for the measurement of the nonreciprocal phase

shift produced by rotation.l’2

Where the best standard fiber-optic gyros require
polarization-preserving fibers and couplers to avoid polarization scrambling that is a
source of noise and signal fading, the PCFOG can avoid this problem by using
polarization-preserving phase conjugation.3 This has the advantage of allowing for the
use of inexpensive nonpolarization preserving, and even multimode fibers and
components.3'5 Our first objective was to demonstrate that the PCFOG is sensitive to
the nonreciprocal phase shift produced by the Sagnac effect and can be used to sense
rotation. A proof of concept experiment was set up for this objective using an
externally-pumped crystal of barium titanate as the phase conjugator. This experiment,
reported in Ref. 6, provided the first demonstration of rota .ion sensing with a PCFOG.
In this proof of concept demonstration the length of the fiber-optic coil, and therefore
the sensitivity of the gyro, was limited by the coherence length of the laser. To solve
this problem we set up a PCFOG consisting of a Michelson interferometer in which the
light beams from two arms travel as clockwise and counterclockwise beams respectively,
in the same fiber optic coil and reflect from the same self-pumped phase-conjugator. We
reported the demonstration of rotation sensing with this PCFOG in Ref. 7. Again, since
phase conjugation can correct for modal scrambling, a PCFOG can use multimode
fibers. However, complete correction of modal scrambling requires a polarization-

preserving conjugator,5

and the corresponding experimental setup of a PCFOG is
complicated. To solve this problem we set up a PCFOG using a multimode fiber coil, a

nonpolarization-preserving conjugator,q and a spatial filter to discriminate against the

5
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portion of the light reflected by the conjugator that does not correct for modal
scrambling. This experiment, reported in Ref. 8, provided the first demonstration of
rotation sensing with a PCFOG using multimode fiber.

The demonstrations of PCFOG's noted above used a quarter-wave retarder for
biasing. This biasing technique is known to be a source of noise and drift. The preferred
biasing technique in interferometric fiber-optic gyros is to use a fast (faster than the
roundtrip time in the fiber coil) phase modulation at one end of the fiber coil. In our
first demonstrations of PCFOG' it was not possible to use this technique due to the
requirement of mutual coherence between the two beams entering the photorefractive
phase conjugator. However, the recently discovered mutually pumped phase conjugators
(mppC's)?-11 provided a solution to this problem. The MPPC's have the unique ability to
generate the conjugates of two beams that are mutually incoherent. To test this concept
we set up the PCFOG shown in Fig. | using the bird-wing MPPC.ll Light from a laser
was coupled onto a rotating table by a single mode polarization-preserving fiber
SMPPF. The light exiting from the fiber was split into two components by the polarizing
beamsplitter PBS. One component traveled in a multimode fiber MMF, and both
components eventually became the pumping beams for the bird-wing MPPC in a crystal
of BaTiO3. Although the coherence length of the laser was much shorter than the path
length difference between the components entering the BaTiO5 crystal, the MPPC was
able to generate the conjugates of the two components.

Figure 2 shows representative gyro signals obtained from detectors DIl and
D2. For the upper trace, the gyro was first stationary, then it was rotated clockwise,
stopped, and then rotated counterclockwise for several cycles with an amplitude of
approximately 6°/s. The experimentally measured phase shift was in good agreement
with the predicted phase shift. The background noise level with the gyro stationary is

shown in the lower trace (vertical scale is 10 times more sensitive).

Measurements indicated that the noise shown in Fig. 2 was associated with the
bulk optical setup. To solve this problem, the all fiber PCFOG shown in Fig. 3 was
constructed. Light from a single mode diode laser operating at 830 wm was coupled into
a single mode fiber using a tapered fiber tip. This fiber was spliced to the first coupler
which is used to split off light returning from the fiber coil for detection by a pin
photodetector. The first fiber coupler is spliced to a second fiber coupler that splits

6
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Fig. 3 All-fiber PCFOG.

light from the laser into the two counterpropagating waves in the fiber coil. A phase
modulator consisting of 12 turns of single mode fiber on a PZT cylinder was used to
provide a bias for phase sensitive detection with the lock-in amplifier. The conjugator
was a single crystal of BaTiO3 used in the mutually pumped configuration shown in
Fig. 4. Operation at 830 nm was demonstrated using this configuration. A section of
multimode fiber was used for mode scrambling prior to the conjugator to avoid problems
with polarization changes that could give rise to signal fading. Difficulties in obtaining
operation of the conjugator at 830 nm with only 200 uW' available at the fiber output
precluded measurements with the all-fiber gyro.

2.2 Hologram Sharing in Mutually Pumped Phase-Conjugators

Early theories suggested that mutually pumped phase conjugators (MPPC's)
form as a result of self-oscillation in an optical four-wave mixing process.12 However,
experimental evidence has since shown that fanning plays an important role and that
mutually pumped phase conjugation does not seem to be a self-oscillation process. As
detailed in Ref. 13 (Appendix 4.2) we have developed a model based on a coupled-mode
analysis of the grating formation process showing that the amplification coefficient for
mutually conjugated beams is twice that possible for any other scattered beams. This
result provides a quantitative basis for the hologram sharing model of MPPC formation.

8
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2) CONJUGATOR IN MULTI-MODE FIBER GYRO
OPERATING AT 830 nm (GO 5544)

Fig. 4 MPPC at 830 nm.

2.3 Seeding and Grating Phase in Mutually Pumped Phase Conjugators

Mutually pumped phase conjugators (MPPC's) have as a distinguishing charac-
teristic the ability to conjugate two mutually incoherent pumping beams simultan-
eously. This property makes them ideal candidates for applications in communications,
laser locking, fiber optic gyros and optical information processing where coherence
limitations can be a problem. When two pump beams enter a photorefractive material,
an MPPC is generated as a result of competition between multiple gratings that form
between each pump beam and its own amplified scattering. When one particular set of
gratings is common to both pump beams, it dominates over all the other gratings being
formed. This grating diffracts each pump beam into a conjugate beam for the other
pump beam. One question that has remained unanswered to this point has been, what
determines the phase of the grating being formed between the two mutually incoherent
pump beams? From the above description, one might expect that, in the absence of any
other determining factors, the phase of the photorefractive grating should be determined
solely by the phase of the amplified scattering which is responsible for its formation. As
detailed in Ref. 14 (Appendix 4.3), we have examined this question through the
introduction of a seed beam into an MPPC along a path precisely opposite to that taken
by one of its two pump beams. By varying the intensity of the seed beam we sought to

9
C11197DM/ejw




’l Rockwell International

Science Center

SC5544.FR

determine the conditions under which the phase of the grating would be determined by
the phase of the injected seed beam. Our expectation was that when the seed beam was
stronger than the scattering, the phase of the grating forming the MPPC would be
determined by the phase of the injected seed beam.

The experimental setup we used for injection seeding an MPPC in barium
titanate (BaTiOB) is shown schematically in Fig. 5. An argon ion laser operating at 514.5
nm without an intracavity etalon provided the two pump beams (2 and 4) for the MPPC
(MPPCI1). The MPPC was arranged in a double phase-conjugate mirror configura-
tion.9’15 This configuration was chosen for its relative simplicity as only one interaction
region is responsible for the conjugation process. The pump beams were mutually
incoherent by virtue of having traveled over paths that differed in length by more than
the 3 cm coherence length of the laser. The conjugate beams from MPPCI1 are labeled |
and 3. A bird-wing conjugator“ (MPPC2) was used to ensure optimal alignment and
spatial overlap of the injected seed beam with the grating forming in MPPCIl. To
monitor the phase fronts of the conjugate beams, an interferometer was set up between
each conjugate beam and a reference beam from the laser. The resulting fringe patterns
were monitored by detectors D1 and D2. To determine the extent to which the phase of
the seed beam was controlling the phase of the MPPC grating, a PZT mounted mirror was
used to vary the phase of the seed beam.

As shown in Fig. 6, phase changes in the seed beam generated by movement of
the PZT clearly translate into corresponding changes in the phase of the MPPC grating as
evidenced by the fringe movement detected by both D1 and D2.

In Fig.7 a Fourier transform of the beat signal detected by D! during

6

movement of the PZT is presented. For seed/pump injection levels above 107" there is

clear evidence of linkage between the phase of the seed beam and the phase of the MPPC

8 on the self-

grating. Other measurements we performed placed an upper limit of 10”
scatter/pump intensity ratio. In light of this result, the failure of seed/pump beam ratios

below 1078 to influence the phase of the grating has yet to be explained.

2.4 Diffraction Properties of Multiple-Beam Photorefractive Gratings

Many applications of photorefractive media depend on their ability to transfer
intensity and phase information in real time among a variety of incident optical beams.

10
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This multibeam interaction occurs through holographic gratings written in the material
by the interfering incident beams. We constructed an analytical model to solve the
interaction of N mutually incoherent pairs of beams in a photorefractive medium. The
details of this work can be found in Ref. 16 (Appendix 4.4). In short, using our model we
examined the dynamics of a simultaneous read-write process using multiple beams of
comparable intensity. Because of the mediating presence of multiple beams, a complete
energy transfer between two write beams occurs in a finite thickness of the
photorefractive crystal. This is in contrast to the infinite thickness required in the
standard two-beam coupling case. We also found that the diffraction efficiency of the
energy transfer process is a nonlinear function of the read-beam intensity. That is, for
strong coupling and readout in the direction that enhances the grating being read, the
maximum diffraction efficiency occurs when the read beam is more intense than the

- write beams. The diffraction efficiency is also nonreciprocal with respect to readout
from the two input ports.

12
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2.5 Diffraction Properties of Fixed Gratings in Photorefractive Media

While holograms in photorefractive media can be manipulated dynamically,

stored holograms are partially erased by the reading beam each time information is

retrieved. There are situations, such as in computer memory systems17

perceptrons,18°21 where it is desirable to have photorefractive holograms that can be

or in optical

fixed by physical processes so that they are not subject to erasure during readout. It is
important to note in these cases that energy coupling between the reading beam and the
diffracted beam occurs not only because of the fixed grating but also because of a
photorefractive grating formed by these two beams.22 Thus, diffraction in photorefrac-
tive media with fixed gratings is different from simple Bragg scattering. In Ref. 23
(Appendix 4.5) we examine, theoretically, just how different the diffraction process can
be in photorefractive materials with fixed holograms. In determining the effect of the
photoinduced grating it is important to note that because it is formed by incident and
scattered beams it has exactly the same grating wave vector as the fixed volume
grating. Thus the photoinduced grating is either in phase or 180° out of phase with the
fixed gratingzt’ depending on the direction of incidence. This leads to a strengthened or
weakened grating and nonreciprocal diffraction.

2.6 Diffraction Efficiency of Strong Volume Holograms

Volume holograms have attracted growing interest for information-storage
applications owing to their potentially large storage capacity. In most situations the
coupled-mode analysis of volume holograms established by Kogelnik25 accurately
describes the diffraction behavior of a thick hologram and predicts a diffraction
efficiency n that is a periodic function of the index perturbation amplitude-thickness
product. Typically only the increasing part of the first period of n is observed. However,
as the grating amplitude and/or the thickness of the grating is increased, further coupling
between the write beams is expected to result in a reversal of the energy transfer
direction to yield a drop in the diffraction efficiency. As described in Ref. 26
(Appendix 4.6) we have been able to observe this effect in a photorefractive barium
titanate (BaTiO3) crystal. The use of photorefractive crystals for this purpose is
particularly appropriate since the dynamic nature of photorefraction allows the time
evolution of the grating development and erasure process to be observed.

13
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From observation of the diffraction efficiency we can gauge the maximum
number of holograms that can be recorded in a given crystal. Typical numbers obtained
from our measurements were on the order of 106. Unfortunately, such a large number is
difficult to realize in practice because of the additional constraint placed by incoherent
erasure during the sequential exposure process used to achieve the superimposed set of
holograms used for optical storage.

2.7 Optical Pattern Classifier with Perceptron Learning

Processing information in neural networks differs from conventional
applications in that the interconnections play the dominant role rather than acting as
mere communication pathways. As described in the previous section, holographic
techniques, in particular volume holograms, offer the most compact means of storing
information. In the case of neural networks that information is in the form of
27 As detailed fully in Ref. 18 (Appendix 4.7) we have
implemented a novel learning machine which implements the Perceptron algorithm for

interconnection patterns.

pattern dichotomy.20 The optical system performs the weight storage and update
functions for learning using coherent means and, in particular, makes novel use of the
Stokes' principle to achieve truly subtractive as well as additive weight changes. This
precludes the need for biases which were typically used in previous incoherent

implementations.zo
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PHASE CONJUGATE FIBER-OPTIC GYRO
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Appendix 4.2

COUPLED-MODE THEORY OF HOLOGRAM SHARING IN MUTUALLY
PUMPED PHASE CONJUGATORS
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A coupled-mode theory is developed for photorefractive
hologram sharing in mutually pumped phase conjugators.
The theory shows that the spatial gain coefficients for the
mutually conjugated beams are twice as large as those of
other scattered beams.

Mutually pumped phase conjugators (MPPCs) are nonlin-
ear optical devices in which two incident laser beams can
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mutually pump each other and produce phase-conjugated
beams inside photorefractive crystals. Such phase conjuga-
tions have been observed in barium titanate photorefractive
crystals.’# Some of the earlier researchers suggested that
MPPC is a result of self-oscillation in the optical four-wave
mixing process.® Such a model, unfortunately, does not
seem to explain the phase conjugation nature of the process.
To illustrate this, the author may want to point out that the
self-oscillation model using plane waves does not explain
why the conical scattered lights collapse as soon as the wave-
fronts of the incident beams deviate from the planar ones.
In addition, the experimental observation in various photor-
efractive crystals indicates that fanning plays an important
role® and that MPPC does not seem to be a self-oscillation
process. In fact, MPPC behaves much like a stimulated
scattering process which occurs in high gain media. Experi-
mental studies also indicate that most of the MPPCs require
a gain length product of much higher than that predicted by
the self-oscillation model. Recently, a resonator model’ was
proposed by the author and his co-workers to explain the
physical mechanism of the phase conjugation process. Ac-
cording to this model, internal bidirectional ring oscillations
occur inside the photorefractive crystals. Cross readout of
the holograms produces the mutually phase conjugated
waves. Both of these models require the onset of oscilla-
tions. The author presents a coupled mode theory of the
hologram-sharing model which does not require the presence
of internal oscillation or self-oscillation.

The hologram-sharing model proposed earlier,* provides
a very good explanation of the phenomenon of mutually
pumped phase conjugation in photorefractive crystals. The
model is based on the fact that cross washout of index grat-
ings generally occurs except when two sets of beams share the
common hologram. Although the model gives a very clear
picture of the physical mechanisms involved in MPPC, no
quantitative results are given to describe the growth of the
phase conjugated waves. In this Communication, we
present a coupled-mode analysis for the hologram sharing
model of the mutually pumped phase conjugators.

Referring to Fig. 1, let us consider the interaction of two
sets of beams in a photorefractive medium. Beams 1 and 2
are mutually coherent; beams 3 and 4 are also mutually
coherent. But beams 2 and 3 (or 2 and 4) are mutually
incoherent. The electric field can be written as

4
E= 2.4] explitut ~ k, - r)], n
=1
where A;,A3,A3,A4 are the complex amplitude of the four
waves, w),wy,w3,ws are the angular frequencies, and
k) k;,k;,k, are the wave vectors. The frequencies of the
beam satisfy the following condition:
W) T w; ¥ wy T, 2)
This condition indicates that beams 1 and 2 are mutually
coherent; beams 3 and 4 are also mutually coherent. In
addition, these two sets of beams are mutually incoherent.
Inside the photorefractive medium, these four beams inter-
sect and form volume holograms. We assume that beams 1
and 2 enter the medium at the face 2 = 0, and beams 3 and 4
enter the medium from the backface z = L. If we assume
that the frequencies are very different so that (w3 = w;) 72> 1
(where 7 is the photorefractive grating decay time), the fun-
damental component of the index grating can be written

AA,exp(~iK, - 1) + AJA, exp(-iK,, - 1)
+

An = Yn, explio)
1o

c.C.

3)
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where [, is proportional to the total intensity and is given by

Io= AP + 14,2 + |4, + A%, 4)
and Ky, and K,; are the grating wave vectors
Ky, =k,-k, K;=k -k, (5)

and c.c. denotes the complex conjugate term. We note that
there are only two contributions to the index grating since
beams 1 and 2 are incoherent with respect to beams 3 and 4.
If Ky, is distinct from K3, the coupled-mode equations can
be written

d
ZA= —YovnlAPA /L,

%AQ = ]/272]|A1'2A2/10,

(6)
4 4=~y lalayi
dz 27430 A Ag/ .

d
Z A‘ = 1/2743|A3'2A4/IU,

where v2; and 43 are coupling constants. In deriving the
coupled-mode equations, we assume that the photorefrac-
tive medium operates by diffusion only so that ¢ = /2. In
addition, we neglect the material absorption. We notice
that there are two sets of two-beam coupled-mode equations
in Eq. (6). In other words, the two sets of beams undergo
two-beam coupling independent of each other, except for the
denominator I, which accounts for the cross washout of the
gratings due to the presence of the other set of beams. Inthe
usual two-wave mixing (2WM), I, is either 14,12 + JA,)? or
|A312 + 142, The I, in Egs. (6) is, however, given by Eq. (4),
which can be as big as a factor of 2 larger for beams with
similar intensities. The cross washout is a result of two
gratings sharing the same volume of photorefractive medi-
um.
When k, = —k; and k; = —k;, the wave vectors of the two
gratings are identical, i.e.,

- _ Aa
A2 \ p— /
Ag PHOTOREFRACTIVE \
MEDIUM A3
z=0 2=t

(a)

PHOTOREFRACTIVE
MEDIUM

b}

Fig. 1.

Hologram sharing in photorefractive crystals.
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K =K, D
The coupled-mode equations can be written

d . .
e A, = =hy[AA, + AA A,

d . .
nh= v[A1Az + A3A AV,

8)
d . .
az Ay = =Yy[AAs + AA AV,

2 A= W43, + AiAJayl,
where v = 2, = v,3is the coupling constant. We notice that
there are two terms on the right side of each equation in Eq.
(8). Each term represents Bragg scattering from one grat-
ing. Since these two gratings have the same wave vector,
they contribute equally to the Bragg scattering. The magni-

stude of the grating is, however, determined by the algebraic
sum of the two complex numbers A4, and A;A,. If, in
addition,

Aj=pAL  Ay= oA ®
where p is an arbitrary constant, the two terms in the brack-
etsin Eq. (8) are identical, and the coupled equations become

d
%A, = —vlAPA /Iy S Ay = —1IAFAYL,

(10)

a“; A, = VA A,

Let us assume that beams 2 and 4 are the ones that get
amplified due to two-beam coupling (i.e., ¥ > 0). We now
examine the spatial growth of beams 2 and 4. The exponen-
tial growth constant for these two beams in Egs. (10) is twice
as large as that of the same beams in Eqs. (6) as aresult of the
hologram sharing. This factor of 2 is reminiscent of the
theoretical proof of the phase conjugated nature of SBS.8°
It was shown that the gain coefficient for the conjugated
wave in SBS is twice that of any other scattered wave.l? In
fact the spatial gain constant shown in Egs. (10) is exactly the
same as that of the usual 2WM. The cross washout, which
lowers the gain coefficient by a factor of 2 for other scattered
light, disappears as a resuit of the hologram sharing. In
photorefractive media such as BaTiO; or SBN, the exponen-
tial gain coefficient can be as large as 40 cm~1."! Thus, ina
sample of 1 cm, the ratio between the gain of mutually phase
conjugated beams and that of the randomly scattered beams
can be as large as a factor of exp(20). This enormous factor
indicates that the mutually phase conjugate beams are the
dominant ones in terms of spatial growth and that the conju-
gated beams can be generated from the noise.

We now consider the effect of transverse spatial variation
(i.e., A; terms are functions of x,y) on the process of phase
conjugation. For plane waves with A; = constants, Eqs. (7)
and (9) alone do not uniquely yield phase conjugation. In
fact, given a set of incident wave vectors, Eq. (7) yields an
infinite set of solutions for k; and k. These wave vectors are
cylindrically symmetric with respect to an axis along the
direction of (k; — ki). Thus for plane waves (with A, inde-
pendent of x,y), conical scattering may have exactly the same
gain coefficient as the conjugated wave provided that their
amplitudes satisfy Eq. (9). This explains the arcs that are
often observed in attempts to build mutually pumped phase
conjugators. Let k, and k, be an arbitrary set of these

d
E‘; A= 7|A|'2A2/Iov
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solutions. For plane waves, A, expli(wst ~ k; - r)] and A,
expli(wst — k, - r)] are also solutions of the wave equation
because A, terms are independent of k,. This, however, is no
longer true for waves with transverse spatial variation. For
these waves, the complex amplitudes and wave vectors are
related by!?

VA +2i(k-T)A =0, an

For incident waves with nonplanar wavefronts and spatial
amplitude variations, A, and A; are complex functions of x
and y. If Eqgs. (9) are satisfied for all x and y, they uniquely
determined the mutually phase conjugated waves. As a
result of the constraint by Eq. (11), A5(x,y) expli(wzt — k;-1)]
and A,(x,y) expli(wst — k, - r)] are no longer acceptable
solutions of the wave equation. According to this argument,
spatial wavefront variation plays an important role in the
fidelity of mutual phase conjugation. Experimentally, it
was found that the fidelity of mutual phase conjugation
increases drastically as soon as the wavefronts of the incident
waves deviate from the planar one.®

In photorefractive crystals such as BaTiO; or SBN, mutu-
ally pumped phase conjugation starts from the scattering of
the two incident beams (beams 1 and 3) [see Fig. 1(b)].
These scattered waves are represented by A; and A, in Eq.
(1). As a result of photorefractive coupling, these scattered
waves will be amplified in the medium.

Initially these scattered waves A; and A, may have arbi-
trary wavefronts. These scattered waves may be decom-
posed into two parts:

Ay(0) = pAL(0) + A(0),
, (12)
AdL) = pAj(L) + A(L),

where A,(0) and A,(L) represent the portions which are
orthogonal to the conjugate waves. Here we recall that these
amplitudes are also functions of x and y. As indicated
earlier, these nonconjugated parts have smaller gain coeffi-
cients compared with the conjugated parts. Although these
nonconjugated parts may be significant in the beginning, the
conjugated parts dominate at the end due to the exponential
growth. Thus in high gain media such as BaTiO; and SBN,
the mutually phase conjugated beams are often many orders
of magnitude higher than other scattered beams.

Although the present analysis assumes only one interac-
tion region, the result can be easily extended to include two
or multiple interaction regions. In some of the mutually
pumped phase conjugation which involves two or more spa-
tial regions of interaction,2-5 specular reflection and total
internal reflection play an important role in maximizing the
grating strength and matching the Bragg angles. It isimpor-
tant to note that in some cases the specular reflection from
the surfaces may interfere with the hologram and disrupt the
process of phase conjugation. The analysis of this effect is
beyond the scope of this paper.

Summarizing: A coupled-mode theory is developed for
the hologram sharing model of MPPC. The theory predicts
that the amplification coefficient for the mutually phase
conjugated beams is twice that of other scattered beams and
plrovides a quantitative basis for the hologram sharing mod-
el.

The author acknowledges helpful discussions with M. D.
Ewbank, T. Y. Chang, and J. Feinberg (USC). This work is
supported in part by the Office of Naval Research under
contract N00014-88-C-0230.
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Seeding and Grating Phase in Mutually Pumped Phase Conjugators

William R. Christian, Ragini Saxena and Ian McMichael

Rockwell International Science Center, Thousand Oaks, California 91360

We present theoretical and experimental studies of mutually pumped phase conjugation when a
seed beam is injected that is the conjugate of one of the pumping beams. Good agreement
exists between the theoretical and the experimental functional dependencies of the conjugate
reflectivities on seed beam intensity. However, the calculated gain is lower than that measured
by two-beam coupling by nearly a factor of 2. We found that the seed-to-pump intensity ratio
needs to exceed approximately 10-6, greater than 100 times the scattering, before the phase of
the grating in the MPPC would follow the phase of the seed beam when it was varied by using

a moving mirror.
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Optical phase conjugation has been an active field of research for nearly two decades.!
One of the more unusual additions to the list of photorefractive phase conjugators in recent
years has been a group of conjugators known as mutually pumped phase conjugators.2-?
Mutually pumped phase conjugators (MPPCs) have as a distinguishing characteristic the ability
to conjugate two mutually incoherent pumping beams simultaneously. This property makes
them ideal candidates for applications in communications, laser locking, fiber optic gyros, and
optical information processing where coherence limitations can be a problem. Phase
conjugation in an MPPC begins with competition between a multitude of gratings that form
between each pump beam and its own amplified scattering. One particular set of these gratings
is common to both pump beams. This doubly reinforced grating dominates over all the other
gratings being formed. It diffracts each pump beam into a conjugate beam for the other pump
beam. If this description of the conjugation process is correct, then one might expect that, in
the absence of any other determining factors, the phase of the photorefractive grating will be
determined solely by the relative phase between each pumping beam and its scattering. In this
paper, we examine how grating formation is influenced by the injection of a seed beam into the
MPPC along a path precisely opposite to that taken by one of the two pump beams. We show
that the phase of the seed beam determines the phase of the grating if the seed intensity is above
that of the scattered light present in the MPPC. A theoretical derivation, based on the work of

Cronin-Golomb et al.,? is presented for comparison with our experimental results.
2. THEORETICAL ANALYSIS

The geometry for the nonlinear interaction responsible for MPPC is shown in Fig. 1.

Input beams A, and A, are a pair of mutually incoherent beams that enter the photorefractive
crystal from opposite sides (z = L and z = 0 respectively). Imperfections in the crystal scatter

both incident beams. Due to the photorefractive effect, ' interference of each beam with its
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coherent scattered light creates a multitude of randomly oriented index gratings. ’i%'é‘;a‘ax%%ﬂf&’

grating that scatters incident beam A, into the phase-conjugate replica of beam A, (labelled as
beam Aj in Fig. 1) must also, by the principle of time-reversal, scatter beam A into the phase-
conjugate replica of beam A, (labelled as beam A, in Fig. 1). This particular grating is
reinforced by both the incident beams and dominates the competition to eliminate the other
gratings.9 This r.onlinear interaction is described by Degenerate Four-Wave Mixing (DFWM)
with appropria.e boundary conditions. DFWM in photorefractive media in transmission

geometry is described by the following set of coupled equations:5

% = Ilo (AR + RA3) Ag- A,

dd_§2 = -;Y—o (AR, +KoAs) A5+ a &)

Q(%} - . _IY: (AR, +R5A5) A+ 0 A,
%‘4=-_IY;(A1A4+A*2A3)AI-OLA; )

where A, is the complex electric field amplitude of the n th beam at steady-state, a is the linear

amplitude absorption coefficient, and the z axis is taken normal to the surface of the medium.

4
I, is the total beam intensity equal to Z IAml2 and v is the complex amplitude coupling
m=1
. iwnle'i° . . .
constant that is equal to 5 . Here n; is the amplitude and ¢ is the phase of the
c cos

photorefractive index change. w is the frequency and 6 is the angle made by the beams with
the z axis. In this paper, we consider charge transport by diffusion only, so that ¢ = 90°, and y
is a real, positive quantity. The difference in sign of ¥ in Eqgs. (1) when compared to the
coupled equations of Ref. 5 is due to our choice of positive charge carriers for the

photorefractive effect.'! This change was necessary because the charge carriers in barium
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titanate, the material used in our experimental work, are positive.'? Science Center

The coupled Eqgs. (1) with appropriate boundary conditions describe a seeded MPPC in a
photorefractive medium, where linear absorption and depletion of the incident beams have been
taken into account. The equation for each beam has contributions from two terms: one term
due to diffraction from the grating the beam wrote itself (the usual two-beam coupling term ),
and the second term that arises due to cross-readout of the grating written by the other pair of
coherent beams (the four-wave mixing term). Both phase-conjugate beams 1 and 3 are
amplified as they propagate through the interaction region.

We assume that linear absorption is small in the photorefractive medium under
consideration, so that o L. << 1, where L is the interaction length. The boundary conditions
appropriate for MPPC are the nonzero intensities of the two input beams at the opposite faces
of the nonlinear medium, i.e. I,(L), 1,(0) # 0, while the self-generated, phase-conjugate beam
A; is zero at its input: I3(L) = 0. However, for seeded MPPC, we consider beam A, to be
nonzero at its input, i.e. I;(0) # 0. The problem then becomes analogous to phase-conjugation
by FWM in photorefractive media, and we use the solutions obtained by Cronin-Golomb et
al.,S for our study. The phase-conjugate reflection coefficients in the two arms are defined as
the amplitude ratios: p = A3(0) /£,(0) and 6 = A,(L) /A%(L) and are given by’

2c tanh L
Q - A tanh puL

2c tanh UL
Q + A tanh pL

where ¢, A, Q and p are defined as
c =AA +A5A,
A =1(L) - 1;(0) - 14(0)
Q=(A2 +41c?)2
p=yQ/ (L)

)
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I, = L(L) + L;(0) + 1,(0) Science Center (3)

Note that A, I, and Y L are known from the boundary conditions for the problem, while the
integration constant ¢ is proportional to the output intensities of the beams and is yet to be
determined. The phase-conjugate intensity reflectivities in the two arms are defined asR = lpl2
and S =Iof%. An examination of Eqs. (2) reveals that R and S (and also Q and ) are functions
of Ici? only, and not any linear combinations of ¢ and c*. Hence the problem is solved once

ici? is determined. Ici? s given by the roots of the transcendental equation5
[ el - 1,(0) I,(L)] (Q - AT)* + 4 1l T? (L) I,(0) - 4l TQI,(0) =0 @)

where T = tanh (uL).

Figure 2 is a plot of the steady-state phase-conjugate reflectivities R and S in both the
arms as a function of the seed beam intensity I;(0). The product of the coupling constant and
the interaction length (= y L) is taken to be 2.26, and the input intensity of the two beams is
assumed to be equal; i.e., I,(L) = I4(0) = 1. For a weak seed beam with intensity of the order
of [,(0) < 105, the phase-conjugate reflectivities in the two arms of the MPPC are hardly
affected by the presence of the seed beam. For larger seed beam intensity, the phase-conjugate
reflectivity in the arm that is directly seeded increases monotonically with the seed beam
intensity. This is true even if we were to subtract out the contribution of the seed, I1(0), from
the phase-conjugate signal, S. In the arm not seeded directly, the phase-conjugate reflectivity
at first increases until I;(0) ~ 0.1. Further increase of the seed beam reduces R.

To understand the behavior of the phase-conjugate reflectivities as a function of seed
beam intensity I,(0), we plot the intensities of the four beams as a funciion of disiance into the
crystal using the following expressions5

d, - dy I34(2)
[(2) =11(2) T~ 1,,(2) I3,(2)

_ d2 - dl 134(2)
12(2) - 1 - 112(2) 134(2)
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dl - d2 112(2) .
IB(Z) = 134(2) 1- IIZ(Z) 134(1) Science Center

dl - d2 112(2)
L@ = T1,@ L@ )

Here d, = I,(0) + I;(0), dp = I,(L) and the intensity ratios I;, = 1A% and I3, = 13,1’ are

given by5

1 S.DZe20z_ g,

Ap(d)=->5 % D2 o2H7 . |
1 S. E2e2Mz_ g,
A34(Z) - 2 c* E2 ezuz _ 1 (6)

where the constants D and E are given by: D? = [ 2ici? + S, L,(L)] exp(-2uL) / [ 2lci? + S.
L], E’= S+ exp(-2uL) / S., with S+ = A £ Q. Once again, a knowledge of lci? alone is
sufficient for calculating the intensities as a function of distance. The value of IcI? is obtained
by solving the transcendental equation (4) with the given boundary conditions.

The results of our calculations are shown in Figs. 3a - 3d, in which we have plotted the
intensities of the four beams as a function of normalized distance, for seed beam intensities of
0,0.01, 0.1 and 0.5 respectively. Similar to the choice of parameters for Fig. 2, the two input
beam intensities are equal: I,(L) = I,(0) = 1, and YL = 2.26 . The curves corresponding to the
two input beams are shown by the solid lines, while those corresponding to the two self-
generated phase-conjugate beams are shown by dashed lines. The case of 1;(0) = 0 (Fig. 3a)
corresponds to MPPC with no seed, and equations (5), (6) for the beam intensities are still
valid, but the algebraic equation (4) for Ici? simplifies to: T = Q /[ I,(L) + 14(0)]. The scattered
field of each beam is zero at the two input planes (z = 0 and z = L), and in Fig. 3a, there is little
amplification of the scattered beams while propagating in the medium of length L because the
photorefractive coupling constant is small. In the presence of a small seed beam (I,(0) =
0.01), input beam 4 transfers energy more efficiently to its coherently scattered beam 1 by two-

beam coupling. As a result, this coherent beam pair has comparable intensities near the output
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plane z = L, and reflectivity S increases with I;(0). Due to the photorefractive nature of the

index grating written by beams 1 and 4, maximum grating amplitude occurs near z = L.
Incoherent readout of this large grating by input beam 2 at z = L helps to diffract energy of
beam 2 into its scattered beam 3. As a result, reflectivity R also increases with an increase of
I,(0). As the seed is further increased, the maximum of the grating written by beams 1 and 4
moves to the left (towards z = 0). This is because larger seeds require shorter distances for the
two beams to become equal in intensity. The maximum reflectivity for R occurs for a seed

level of approximately I;(0) = 0.1 (see Fig. 2). This coincides with I, = I, at the center of the

interaction region (see Fig. 3c).
3. EXPERIMENTAL STUDY

Our experimental setup for injection seeding an MPPC in barium titanate (BaTiO;) is
shown schematically in Figure 4. An argon ion laser operating at 514.5 nm without an
intracavity etalon provided the two pump beams (labeled 2 and 4) for MPPC1. MPPCI1 was
arranged in a double phase-conjugate mirror configuration.? This configuration was chosen
for its relative simplicity as only one interaction region is responsible for the conjugation
process. The pump beams were mutually incoherent by virtue of having traveled over paths
that differed in length by more than the 3 cm coherence length of the laser. The conjugate
beams are labeled 1 and 3 in accordance with the terminology used in our theory section. A
seed beam was directed into MPPC1 using a bird-wing conjugator® (MPPC2). The bird-wing
was formed by the transmitted portion of pump beam 2 from MPPC1 and an attenuated beam
from the laser at a point where the beams were mutually incoherent. This configuration
ensured optimal alignment and spatial overlap of the seed beam with the grating that was
forming in MPPC1. The attenuator (a half-wave plate, polarizing beamsplitter combination)
was used to adjust the intensity of the seed beam entering the bird-wing conjugator. For some
measurements we required a higher power seed beam than was obtainable from the bird-wing

conjugator alone. To increase power in the seed beam we used amplification by two-wave
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mixing in a third BaTiO; crystal (not shown) positioned in the seed beam's path between

MPPC2 and the PZT mounted mirror. Care was taken to ensure that the seed beam was
coherent with pump beam 4 (see Fig. 4) so that a grating would form in the crystal at the same
location as the grating being formed by self scattering.

To examine the effects of seeding on the phase fronts of the two conjugate beams, an
interferometer was set up between each conjugate beam and a reference beam from the argon
ion laser as shown in Figure 5. Beam paths in each interferometer were arranged so that
conjugate and reference beams would be mutually coherent when combined. The resulting
circular fringe patterns were then monitored by detectors D1 and D2. Figure 6 shows the
fringe pattern that was observed for conjugate beam 3 with and without seeding. In this case,
two 5 mW (1 mm diameter) pump beams were used to form the conjugator and a 0.4 mW
beam was used for seeding (Iseed/Ipump = 0.08). Note that introduction of the seed beam did
not noticeably disturb the phase front of the conjugate beam. Furthermore, varying the path
taken by the seed beam to the conjugator using a piezoelectric translator (PZT) did not distort
the phase front of the conjugate beam as long as the motion was slower than the response time
for movement of the photorefractive grating (approximately 1 fringe/sec). Instead it led to
motion of the fringes as the photorefractive grating moved to keep in step with the phase of the
seed beam. This is shown clearly in Fig. 7 where we have plotted the travel of the PZT against
the motion of the fringe patterns detected by D1 and D2.

Variation of the phase-conjugate reflectivity in both arms of MPPC1 as a function of seed
beam intensity is shown in Fig. 8. The data have been corrected to take into account both
Fresnel and absorption losses. Absorption in our BaTiO, crystal was a= 1.4 cm? at 514.5
nm. The solid line is a theoretical fit to the data using YL = 2.26 for the coupling factor. There
is good agreement between the functional dependence predicted by the theory and that
measured in the experiment. However, a two-wave mixing (TWM) gain measurement between
the seed beam and pump beam 4 (see Fig. 4) yielded YL = 4 when neither the orientation of the
crystal nor the positioning of the beams was changed from that used in the seeded MPPC

experiment. The discrepancy between yL for TWM and MPPC has been noted before!3 but to
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our knowledge, it has not been explained. It could account for the observatio'rﬂﬁgt %ﬁgsecf

conjugators with equal intensity inputs never attain the 100% reflectivities that are predicted for
them by calculations using values of YL obtained through TWM measurements.

To determine the minimum seed intensity necessary to influence grating formation in the
MPPC, we proceeded in the following manner. The path taken by the seed beam to the
conjugator was varied by applying a sawtooth signal to the PZT shown in Fig. 4. The PZT
moved 7 um in 100 seconds causing the fringes observed by D1 and D2 to move at a rate of
0.13 Hz when the grating was locked to the seed beam. By taking a fast Fourier transform
(FFT) of the signals from detectors D1 and D2, the seed levels at which the 0.13 Hz frequency
component was present were easily discernable. A series of FFTs taken for seed-to-pump
intensity ratios ranging from 6 x 103 to 0.9 x 10 is shown in Figure 9. The only difference
between these traces was in the power of the seed beam entering the conjugator.

If scattering determines the phase of the grating in the absence of the seed beam, then the
level of scattering along the seed path should place a lower bound on the seed intensity required
to control the phase of the grating. To determine the amount of self scattering present without
seeding we performed the following experiment. First detector D2 was moved over a meter
away from MPPCI along the path taken by the conjugate beam it had been monitoring. Two 1
mm pinholes were then placed in the beam path, one close to the conjugator and the other just
in front of the detector. This arrangement served to select only that portion of the scattered
light that contributed to MPPC grating formation. Next, all beams entering the crystal were
blocked and the MPPC gratings were erased by a strong beam split off from the pump laser.
Following grating erasure, only the pump beam entering the conjugator from the left (see Fig.
4) was unblocked. Figure 10, which shows the signal recorded by D2, illustrates the buildup
of fanning from scattering along the path normally taken by the conjugate signal of the MPPC.
To the resolution of our detection apparatus (0.1 nW) no scatter signal was observed prior to
the buildup of fanning. This places an upper limit of 108 on the scattering-to-pump intensity
ratio. This is two orders of magnitude below the minimum seed level required to influence

grating formation in the crystal. The reason for this difference is not presently understood.
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4. CONCLUSIONS/DISCUSSION

We have studied the behavior of a mutually pumped phase conjugator when a seed beam
is injected into the conjugator that is the conjugate of one of the pumping beams. There is good
agreement between the functional dependencies of the conjugate reflectivities on seed beam
intensity as predicted by the theory and as measured in the experiment. However, the gain
obtained from the theoretical fit to the data is lower than that measured by two-beam coupling
by nearly a factor of 2. To our knowledge this discrepancy remains unexplained and may be
the reason that MPPC's have not obtained the high reflectivities that measurements of two-
beam coupling would imply.

It seems reasonable that the phase of the grating in an unseeded MPPC is determined by
the phase of that portion of the scattering that is conjugate to the pumping beams, and therefore
that the phase of the grating would be influenced by a seed beam when its intensity exceeded
that of the scattering. This is qualitatively supported by our experiments, but not
quantitatively. The scattering that was conjugate to the pumping beams was measured to be
less than 10-8 of the pumping intensity, whereas our measurements indicated that the seed
beam to pump beam intensity ratio needed to exceed approximately 106 before the phase of the
grating followed the phase of the seed beam when it was varied at a rate that was slower than
the photorefractive response time. This ability to control the phase of the grating in a MPPC
using a weak seed beam may be used to provide a nonmechanical method for biasing and

modulation in phase-conjugate interferometers.
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10.

Geometry for mutually pumped phase conjugator.

Steady-state phase-conjugate reflectivities R and S as a function of seed beamn
intensity I for YL = 2.26 and equal input pump intensities [Ip(L) = I4(0) = 1].
Four beam interactions in the MPPC with initial pump beam intensities equal
[Ta(L) = I4(0) = 1], YL =2.26, L = 1 cm., for seed beam intensities of (a) O; (b)
0.01; (¢) 0.1; and (d) 0.5

Experimental setup for external seeding of an MPPC. Pump beams 2 and 4 from
an argon ion laser form MPPC1 which generates phase-conjugate beams 1 and 3.
Seeding through a bird-wing conjugator (MPPC2) ensures optimum overlap of the
injected seed beam with the grating in MPPC1. An attenuator (half-wave plate and
polarizer) provides control of seed beam intensity while a PZT mounted mirror
varies the phase of the seed beam.

Experimental setup for external seeding of an MPPC including interferometers used
to monitor the phase fronts of phase conjugate beams 1 and 3. As shown, detectors
D1 and D2 monitor beams 3 and 1 respectively.

Interferogram of the phase front of phase conjugate beam 3 taken with (a) no seed
beam; (b) a 0.4 mW seed beam; and (c) a 0.4 mW seed beam with a sawtooth
signal applied to the PZT causing fringe movement at 0.27 Hz.

Beat signal detected by D1 and D2 when the seed beam phase is changed by a 7
pm movement of the PZT mounted mirror in the seed beam path. Seed-to-pump
beam intensity ratio is 0.15 in this case.

Phase conjugate reflectivities R and S as a function of seed beam intensity.

FFT of signals taken by D1 for seed-to-pump intensity ratios ranging from

0.9 x 10-6 to 6 x 10-3 when the signal applied to the PZT creates a 0.13 Hz
movement of fringes in the interferogram.

Scattering and fanning buildup signal monitored by detector D2.
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Diffraction properties of multiple-beam
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We have analytically solved the problem of N mutually incoherent pairs of beams in photorefractive media, each
pair of which shares a common grating. The results are applied to study simultaneous read-write of dynamic
photorefractive holograms with beams of comparable intensity. The diffraction efficiency is shown to be a
nonlinear function of the read-beam intensity and is nonreciprocal with respect to readout from the two input
ports. A complete energy transfer between the two write beams occurs in a finite thickness of the photorefrac-
tive crystal, in contrast to the infinite thickness required in the standard two-beam coupling case.

INTRODUCTION

Most applications of photorefractive media in nonlinear-
optical processing depend on these materials’ ability to
transfer intensity and phase information in real time
among the various incident optical beams. This multi-
beam interaction occurs through holographic gratings
written in the material by the interfering incident beams.
While a variety of beam-coupling scenarios have been pro-
posed, by far the most commonly used are the standard
two-wave' and four-wave*® mixing geometries illustrated
in Figs. 1(a) and 1(b), respectively. This is at least partly
a result of the fact that analytic solutions for the interact-
ing beam amplitudes can be obtained for two-wave®®-® and
four-wave'® mixing by using transmission reflection ge-
ometries in photorefractive media with negligible absorp-
tion. In the four-wave mixing case, the analysis is greatly
simplified because the beams interact through a single
shared grating. Numerical techniques are required for
studying the effects of bulk absorption on two-beam cou-
pling in reflection geometry'° and on four-wave mixing in
either geometry.!"’? The descriptions of higher-order
multibeam processes, in general, will also require more
cumbersome numerical approaches.

In this paper we describe such a class of multiple-beam
interactions in photorefractive materials with linear ab-
sorption for which relatively simple analytic solutions
exist. Specifically, we shall consider a system of N pairs
of mutually incoherent beams incident upon a photorefrac-
tive material as shown in Fig. 2(a). We shall show that
when these beams are oriented so that the N holographic
gratings written by all the pairs of beams coincide, the
amplitude of the overall shared grating may be derived
analytically and then used to obtain explicit expressions
for the amplitudes of all the 2N interacting beams. The
case of N = 2 would describe the two-wavelength photo-
refractive optical interconnect by McRuer et al.'® With
suitable boundary conditions, the results of this case aie
also applied to study simultaneous read-write of dynamic
photorefractive holograms with beams of comparable in-
tensity. Enhanced readout occurs because of beam cou-
pling during display, and the diffraction efficiency is
shown to be nonreciprocal with respect to readout from
the two input ports. In particular, we shall show that

0740-3224/90/071210-06802.00

this form of multibeam interaction permits complete en-
ergy transfer between beams in a finite depth of material,
in contrast to the behavior seen in the canonical two-wave

mixing geometry.

THEORETICAL FORMULATION

The schematic representation for coupling of N mutually
incoherent pairs of beams in photorefractive media is
shown in Fig. 2(a). A, and B, are two coherent laser
beams of the nth pair that are symmetrically incident at
an angle 8, on a photorefractive crystat of thickness L.
The electric field amplitudes of the beams in one direction
may be written as

E, (r,t) = Y%A, (x) expli(ka, * T — wat)] + cc., 1)

where A, is the complex amplitude of the nth field at
steady state and k,, is the wave vector in the medium.
To describe the fields in the other direction, A is replaced
by B, and we have assumed that all the beams are plane
polarized in the same direction. Each beam pair is inco-
herent with the other pairs, and the wave vectors k,, and
kp, are such that each beam can still Bragg diffract off
the gratings written by the other beam pairs. The x axis
is taken normal to the surface of the medium, and the
complex amplitudes are assumed to be functions of x due
to absorption and energy transfer by beam coupling. We
assume that the frequency difference between any two
pairs of beams, Awn, & w, = w,, is much larger than the
inverse of the response time r of the medium, i.e.,
Awmn, >> 7', Then the medium cannot respond to these
fast oscillations in the intensity, and beams of different
frequency will not write a grating. The time-averaged
intensity then simplifies to

Ir) = % Y {|A,? + |Ba|® + [AnB.* exp(iK, - 1) + cc.]},

2)
where the grating vectors are defined by K, = k,, - kp,.
Hence the intensity contains an interference term from
each pair, summed over all such pairs. This interference
pattern induces a spatial modulation of the refractive in-
dex of the medium by means of the photorefractive effect

© 1990 Optical Society of America
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Fig. 1. Schematic representation of (a) two-wave mixing and

(b) four-wave mixing in photorefractive media.
.1 7’
8" ™.
SHARED
8,

A,
A;

3 |
GRATING

(@) ()
Fig. 2. (a) Schematic representation of multibeam coupling
in photorefractive media. (b) Vector diagram showing the
Bragg condition.

that has the form

n=n,+ :—;-[e" exp(iK-r) Y A.B,* + c.c.}, {3a)
0 L]

where
IO = 2(|An|2 + IBnlz) (3b)

and we have assumed that the Bragg condition is satisfied
for all beam pairs: K, = K [see Fig. 2(b)). Under these
conditions, the gratings formed by all beam pairs combine
to form a single grating that couples all the beams. Here
n, is the background refractive index of the photorefrac-
tive medium in the absence of light, An is the amplitude of
the index grating at the fundamental harmonic of the
grating vector, and ¢ represents the spatial phase shift
of the index gratings with respect to the light intensity
pattern. We have assumed that the photoionization cross
section, the recombination coefficient, and the back-
ground refractive index of the photorefractive medium
are essentially the same for ail the incident frequencies
00 that An and ¢ depend only on the material properties
and on the magnitude and the direction of the grating
vector K.

To describe the propagation and the coupling of the
waves in the nonlinear medium, we start with the wave
equation, use the slowly varying envelope approximation,
and ignore terms that are quadratic in the index change to
arrive at the following coupled equations for the complex
field amplitudes:

dA,
—d—; = yGB, - aA,,
2B -yG"A, - o, @
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where o is the field absorption coefficient and y is the
complex coupling coefficient that is given by

iwAne' 5
2c cos @ ®)
while G represents the normalized amplitude of the over-
all shared grating:

G = Y A,B,YI,. 6)

We have ignored the small frequency differences between
the waves and taken w, = w for all the waves, and we have
assumed that 6, = 8, leading to the same coupling constant
for all the beam pairs. For typical values of 1-um grating
period and 1-mm thickness of the photorefractive grating,
the frequencies of the various beam pairs can differ by a
few tens of gigahertz and their angles differ by a few milli-
radians for the Bragg phase-matching condition to be still
satisfied, so that assuming the same coupling constant for
all the beam pairs seems reasonable. In the next section
we obtain general analytic solutions to the coupled ampli-
tude equations (4) for arbitrary input beam amplitudes.

GENERAL ANALYTIC SOLUTIONS FOR
MULTIWAVE MIXING

We restrict our attention to charge transport by diffusion
in the photorefractive crystal. Choosing ¢ = 7/2, we see
from Eq. (5) that y is a real, negative quantity, which we
denote by =T (' = wAn/A cos 6, where A is the free-space
wavelength). The linear absorption terms can be elimi-
nated by the transformation: a, = A,e*", b, = B,e*".
The coupled equations in terms of the new variables are

da,

a4 - e

db,

- = 7
ix Tg*a., )]

where g is redefined in terms of the new variables: g =
Z.8x/io, with g, = a,b,* and iy = ], exp(2ax). Note that
i, remains constant as the beams propagate through the
nonlinear medium. We define another normalized vari-
able as f = 3,f./io, where f, = (la.|* — [b,]°), and the non-
linear, coupled equations for the global varisbles f and g
are given by

H
46l - arigry,

& el
i 4l|gl®. 8

Equations (8) can be decoupled since (2 + 4 |g|*) is & con-
served quantity, which we take equal to the constant C*.
The value of C will be determined from the boundary con-
ditions for the beams at the input. The resulting equa-
tion for f, df/dx = ~T(C? — f?), can be solved to yield

f(x) = —C tanh(CTx - D), (5a)
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where the integration constants C and D are given by

Dsiln——c* Ao

2 =10 (9b)

C* = f%0) + 4(8(0)'%,

and the solution for the magnitude of the overall shared
grating is

lg(x) = 5 sech(CTx - D). )

If D =~ 0 and C = 1 (this will be true for the dynamic holo-
gram described in the next section when the two write
beams are of equal intensity and the read beam is much
weaker than either of the write beams), then Eq. (9¢)
shows that the strength of the overall shared grating is
maximum at the input plane and falls off exponentially
with increasing distance for large coupling strength
(Tx >> 1). This behavior is expected because, for equal-
intensity write beams, the fringe contrast —and hence the
photorefractive index grating—is maximum at the input
plane. To determine the phase of the overall shared grat-
ing, we express g in polar form: g = |g| exp(id,). Since
T and f are real quantities, we find from Egs. (7) that
dé,/dx = 0, indicating that the phase of the overall
shared grating is uniform throughout the interaction
region and equal to its value at the input plane, ¢,(0).
Having determined the solutions for the global variables
f(x) and g(x), we now consider the coupled equations for
the variables £, and g. that are characteristic of each indi-
vidual beam pair:

_.dg" =

dax Igf.,

_..d"" - *

dax 21g%g. + cc. (10)

If we define each complex grating in the following man-
ner: g. exp[—id,(0)] = r, + is,, then the above set of
coupled equations transforms into the following:

dr,

32 = Telfe,

ds,

—-=0,

dx

& .
3, = ~4Tleir.. ay

Equations (11) show that in the complex plane rotated by
@,(0), the imaginary part of g, remains constant at its
initial value. The coupled equations for the intensities of
the beams of a given pair are given by

di,,
e 2T\g|ra,

dis, _
T = e, a2)

where i, = |a,|?and i, = [b.>. Once the solution of r, is
determined from Egs. (11), it may be substituted into
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Eqs. (12) along with |g| to solve finally for the intensities
of the various beams. Following exactly the same proce-
dure as for solving the global variables and simplifying, we
obtain the following expression for the intensity of beam A
of the nth pair:

ig,(0) = i, (0)
2
x {1 + tanh(CTx — D) tanh D
- sech(CT'x — D) sech D]
= [1,.(0)i,,(0))' cosld,,(0) - 0)]
x [tanh(CT'x — D) sech D
+ sech(CTx — D; tanh D], (13)

i, (x) = i,,(0) -

where ¢,, (0) is the phase of the complex grating g. at the
input plane: g. = |g.| exp(i¢,,). The intensity of beam B
for the same pair is given by the relation i,,(x) = i,,(0) +
i,(0) = i, (x). We shall now apply the general solutions
developed in this section to study special cases of interest
in the following two sections.

SIMULTANEOUS READ-WRITE OF
PHOTOREFRACTIVE HOLOGRAMS

We now consider simultaneous illumination of the photo-
refractive crystal by two beam pairs 1 and 2, the boundary
conditions being that both beams of pair 1 are nonzero at
the input (x = 0), while only beam A; is nonzero at the
input for the second pair [i.e,, A;(0) = 0, B,(0) = 0].
Bragg diffraction of A, off the grating written by beam
pair 1 generates the beam B; in the nonlinear medium,
and we study its diffraction efficiency for a variety of
different situations. In previous theoretical studies of
volume holograms in photorefractive crystals,5-*1¢-1¢
recording and replay of the photorefractive holograms are
treated as two separate processes, and readout is accom-
plished with a weak beam (assumed to be weak enough
not to perturb the grating being read). In this section we
consider simultaneous write-read of volume phase holo-
grams with beams of comparable intensity.

Note that the beam interaction under consideration in
this section is formally identical to the forward four-wave
mixing geometry studied by Khyzniak ef al.!” and Fischer
etal.’® In Ref. 17 the authors studied the phase-conjugate
nature of the fourth beam generated by the nonlinear
interaction of the three, noncoplanar interfering beams of
equal frequency, whereas in Ref. 18 the authors examined
photorefractive coupling of two beams with general polar-
ization, which led to four coupled equations for the various
components of the beams’ electric fields. In this section
we study the diffraction efficiency of the read beam in
the limiting case of coplanar propagation vectors for all
the beams.

Consider the index grating written by equal-intensity
write beams A; and B,. Now suppose that this grating is
read by beam A; 0 that beam B; is zero in the input
plane. This implies that st the input plane, the phase of
the overail shared grating is equal to the phase of the
grating resulting from beam pair 1; i.e., ¢,(0) = é,(0).
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Hence the solutions in Eq. (13) simplify to

Ly(x) = In(0)e %**[1 — tanh D sech(Cl'x — D)
- sech D tanh(CTx — D)),
La(x) = Yl o(0)e"2°*[1 + sech D sech(CTx — D)
- tanh D tanh(CTx - D)], (14)

where we have expressed the solutions in terms of the
original variables. If we define the diffraction efficiency
1 of beam A, as the intensity ratio Ip,(L)/11,(0), where L is
the crystal thickness, then 7 is given by the expression

e-ﬂal.
n =S~ (1 + tanh D tanh(CTL - D)

- sech D sech(CTL - D)). 15)

As can be seen from Egs. (9b), the parameters C and D
are determined by the intensities of the input beams.
Hence, because of coupling during readout, the diffraction
efficiency is now a nonlinear function of the read-beam
intensity, besides having the usual dependence on the
write-beam intensities. For large coupling strengths
such that (CTL - D) >> 1, and negligible absorption
losses, we have

L.(L) =~ I,(0)(1 ~ sech D),
Is (L) = %l(0)(1 - tanh D},
n = %(1 + tanh D). (16)

Since the maximum value of tanh D is 1, n can in principle
attain the value of 100%. This is a consequence of the
grating’s being written by the pair of write beams 1 and of
the self-induced grating being written by the read beam
A; and its diffracted beam being in phase with each other.
If we reverse the sign of the coupling constant I, then
Eq. (15) transforms into

e-hL
n = <>—[1 - tanh D tanh(CTL + D)

— sech D sech(CTL + D)], (17)

8o that for strong coupling n = 1/2(1 —~ tanh D). The
maximum value of 7 in this case can only be 50% when
tanh D = 0. For equal intensity of the write beams,
changing the sign of I' is equivalent to reading the grating
from the other input port [I,,(0) = 0, Is,(0) # 0]. In this
case, the grating written by the pair of write beams 1 and
the self-induced grating written by the read beam B, and
its diffracted beam are out of phase with each other
(&,, — @4, = ), leading to a decrease in the diffraction
efficiency. Hence our results show the nonreciprocal
nature of readout of gratings in the presence of coupling.
Similar results were obtained qualitatively by Staebler
and Amodei® for fixed gratings when they used the
coupled-wave theory of Kogelnik'* and treated record and
replay as two separate stages.

If the read beam is much weaker than either of the
write beams, then from Eq. (9b), C =~ 21 and D = 0.
Since we chose beam coupling to be such that A, is de-
pleted and B, is amplified in the process of writing the
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index grating, our choice of the value of C is limited to +1.
Consequently Eqgs. (14) and (15) reduce to

(L) = I, (0)e"*[1 - tanh(TL)],
In,(L) = I4,(0)e *L[1 + tanh(TL)),

e-ﬂaL

== {1 ~ sech(TL)). (18)

The solutions for the write beams with negligible absorp-
tion are identical to those by Vahey,” who assumed a phe-
nomenological expression for the index modulation. Note
that for weak read beams the diffraction efficiency is in-
dependent of the read-beam intensity and remains con-
stant if the sign of the coupling constant is reversed.
Hence the nonlinearity and the nonreciprocity in n are
observed only when the read beam has an intensity com-
parable with that of the write beams. For small coupling
strengths (I'L << 1) and negligible absorptive losses
(a = 0), the diffraction efficiency has a quadratic depen-
denceonTL: n = TI'’L*/4. For strong coupling and negli-
gible absorption, the maximum value of n is 50% for
readout from either input port, which is smaller than the
maximum diffraction efficiency that can be obtained with
a strong read beam. Hence for strong coupling and read-
out in the right direction to enhance 7, there exists a
range of values for the read beam intensity for which it is
actually advantageous to read with a beam that is more
intense than the write beams.

Figure 3 is a plot of the diffraction efficiency as a func-
tion of the read-beam intensity, as given by approxima-
tions (16). The equal intensity of the write beams is taken
to be unity: I,,(0) = I5,(0) = 1, and the absorption
losses are assumed to be negligible: a = 0. With this
choice of input beam intensities, the index change An in
Eq. (5) will be determined by the nonlinear material equa-
tions.'? For small coupling strengths (I'L = 1) and weak
read beam [I4,(0) < 1,,(0), I5,(0)), the diffraction effi-
ciency is independent of the read-beam intensity. In-
crease of the read-beam intensity above the write-beam
intensities serves to erase the grating being read, and the
diffraction efficiency falls to zero. For strong coupling,
the behavior of 7 is different —the diffraction efficiency is
~50% for weak read beams increases as the read beam
becomes stronger than the write beams, reaches a broad

T T Al
o= 0
101101 = Igy (O} = ¢

b

DIFFRACTION EFFICIENCY % (n)

0 1 10.0 100 1000
READ BEAM INTENSITY (1,10

Fig. 3. Diffraction efficiency n as a function of resd-beam
intensity J.,(0) for various coupling strengths I'L. The nor-
malized, equal intensities of the write beams are unity:
14,(0) = I3,(0) = 1.
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maximum, and eventually falls to zero when 1,,(0) >>
14,(0), In,(0).

To understand the nonlinear behavior of the diffraction
efficiency with the read-beam intensity that occurs at
strong coupling, we have plotted the intensities of the four
beams as a function of the distance propagated in the
medium in Fig. 4. The absorption losses are assumed to
be negligible (a = 0), and the coupling is assumed to be
strong (T = 5§ em™, L =1 cm). As in Fig. 3, the equal
intensity of the write beams (solid curves) is taken to be
unity, and the intensities of beam pair 2 (dashed curves)
are normalized by the read-beam intensity at the input,
I4,(0), with I, (0) = 0. For these input intensities, grat-
ing 1 has its maximum amplitude near the input plane,
while grating 2 is zero. For strong coupling there can be
a complete energy transfer between the write beams, and
when this happens the grating formed by the write beams
reduces to zero. This particular propagation distance is a
sensitive function of the read-beam intensity. For a weak
read beam, which does not perturb the grating written by
beam pair 1, total energy transfer requires long interac-
tion lengths, as is typical of two-beam coupling in photore-
fractive media and is shown in Fig. 4(a) for I,,(0) = 0.01.
As scattering of read beam J,, off grating 1 generates
beam I,,, grating 2 slowly builds up. An examination of
the curves reveals that, near the exit plane, grating 1 is
zero and only grating 2 is finite, but it is very weak owing
to the cross-washout factor I, in the denominator. Hence
the maximum diffraction efficiency of the read beam is
50%. As the intensity of the read beam increases, grating
2 can build up to a magnitude comparable with that of
grating 1, and, since the two gratings are in phase, the
overall shared grating strength increases, leading to a
stronger coupling of the beams in a given pair. The propa-
gation distance for tota! depletion of I,,(0) decreases as
I,,(0) is increased, being approximately half of the interac-
tion length when all three input beams have equal intensi-
ties (Fig. 4(b)]. Beyond this distance, scattering of Is, off
grating 2 begins to restore the depleted beam I,,, and
grating 1 is rebuilt. Consequently, there are now two
in-phase gratings near the exit plane, leading to a larger
diffraction efficiency. Since scattering of I, increases
with the intensity of read beam, grating 1 rebuilds to a
bigger amplitude with increasing I, and hence higher n
(Fig. 4(c)). However, if 1,,(0) >> 1,,(0), I5,(0) [Fig. 4(d)},
then grating 1 is small near the input plane and grating 2
is zero. Consequently, depletion of I,, occurs slowly, al-
most near the end of the interaction region, so that grat-
ing 1 no longer has a chance to rebuild. Once again only
a single grating, grating 2, contributes to the overall
shared grating near the exit plane, leading to a decrease
in n. For still higher read-beam intensities, grating 1 be-
comes small near the input plane so that diffraction of
read beam becomes negligible throughout the interaction
region and n reduces to zero. Thus the nonlinear behav-
ior of the diffraction efficiency with read-beam intensity
arises because of the photorefractive nature of the index
gratings — the grating strength depends on the local beam
ratios and not on the absolute intensities of the beams.

Figure 5 is the same set of curves as in Fig. 3 but for
negative coupling constant I, which corresponds to readout
from the other input port. In this case, the two gratings
are out of phase, so that there is no enhancement of the
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Fig. 4. Intensities J(x) of the four beams as & function of the
depth x within the medium. The absorption coefficient a is
taken to be zero, the coupling coefTicient I is equal to 5 cm™", and
the interaction length L is 1 cm. The normalized, equal intensi-
ties of the write beams (shown as solid curves) are unity:
14,(0) = I5,(0) = 1 and I5,(0} = 0. The read beam 1,,(0) has the
following intensity corresponding to each figure: (a) 001, (b) 1,
(¢) 10, (d) 100.
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Fig. 5. Diffraction efficiency n as a function of read-beam in-
tensity I4,(0) for various negative coupling strengths L. The
normalized, equal intensities of the write beams are unity:
1, (0) = In,(0) = 1.
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Fig. 6. Diffraction efficiency n as & function of read-beam

intensity 1,,(0) in the presence of absorption (dashed curves,

2al = 1). The normalized, equa! intensities of the write beams

are unity: 1,,(0) = I, (0) = 1.
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Fig. 7. Diffraction efficiency n as a function of coupling strength
TL for various read-beam intensities 1,,(0). The normalized,
equs] intensities of the write beams are unity: I,,(0) =
15,(0) = 1, and absorptive losses are assumed to be negligible

(a = 0).

diffraction efficiency for any intensity of the read beam.
As predicted by Eq. (17), the maximum diffraction effi-
ciency is only 50% at large coupling strengths.

The effects of finite absorptive losses are shown in
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Fig. 6; the product of the power absorption coefficient
and the crystal thickness is taken to be unity. The de-
pendence of 7 on 4,(0) remains the same, but the magni-
tude of diffraction efficiency is reduced by the factor e ¢,

Figure 7 is a plot of the diffraction efficiency n versus
the normalized coupling strength I'L for negligible absorp-
tion and equal intensity of write beams, I,,(0) = I5,(0) =
1. The asymmetry in 7 is negligible for a weak read
?es:)n and becomes appreciable only when 14,(0) 2 I,,(0),
5,(0)

CONCLUSIONS

We have solved analytically the problem of N mutually in-
coherent pairs of beams in photorefractive media, each of
which shares a common grating. The results are applied
to study simultaneous read-write of dynamic photore-
fractive holograms with beams of comparable intensity.
Because of the mediating presence of multiple beams, a
complete energy transfer between the two write beams
occurs in a finite thickness of the photorefractive crystal.
The diffraction efficiency is shown to be a nonlinear func-
tion of the read-beam intensity: for strong coupling and
readout in the direction that enhances the grating being
read, the maximum diffraction efficiency occurs when the
read beam is more intense than the write beams. The
diffraction efficiency is also shown to be nonreciprocal
with respect to readout from the two input ports.
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The diffraction properties of fixed volume gratings, including the effect of additional photorefractive energy
coupling between the incident wave and the diffracted wave, are considered. Both transmission gratings and
reflection gratings are treated. Analytical solutions for phase gratings are derived, and numerical solutions
for absorption gratings are also obtained. The results are presented and discussed.

INTRODUCTION

Photorefractive materials such as BaTiO;, LiNbO;,
Sr,Ba,_.Nb,O;, and Bi;3SiO; (BSO) are, by far, the most
efficient media for the recording of dynamic holograms.!
In these media information can be stored, retrieved, and
erased by light. In addition to the holographic properties,
energy coupling occurs between the recording beams and
also between the reading beam and the scattered beam.
This is known as two-wave mixing? (TWM). The unique
properties of beam coupling and high diffraction effi-
ciency can be employed for many applications in optical
computing,® including information storage, image pro-
cessing,*® reconfigurable optical interconnections,™® and
implementation of neural networks.®"

While the holograms in photorefractive media can be
manipulated dynamically, the stored holograms are par-
tially erased by the reading beam each time the informa-
tion is retrieved. There are situations in which it is
desirable to have photorefractive holograms that can be
fixed by physical processes. These fixed holograms are
not subject to erasure during readout.'?'®* For example, it
is desirable to fix the photorefractive holograms at the end
of the learning cycles in optical perceptrons.'”-?* After it
is fixed, a trained perceptron will perform pattern classi-
fication without its memory fading. It is important to
note that energy coupling between the reading beam and
the scattered beam occurs not only because of the fixed
grating but also because of the photorefractive grat-
ing formed by these two beams.?’ The diffraction is
therefore different from that of simple Bragg scattering.
Previously, Bragg diffraction from fixed gratings and pho-
torefractive beam coupling were treated separately.?**
In this paper we investigate, theoretically, the diffraction
properties of these fixed holograms in photorefractive
media, taking into account the effect of the photoinduced
index gratings. In the following discussions we assume
that the relaxation time of the fixed grating is much
longer than the time needed to form a new photorefractive
grating and that diffusion is the dominant mechanism for
the transportation of charge carriers.

0740-3224/90/122339-08%02.00

THEORETICAL FORMULATION

Consider a fixed volume grating inside a photorefractive
medium with a well-defined grating wave vector K. A
plane wave is incident upon the fixed volume grating
along a direction that satisfies the Bragg condition (see
Fig. 1). As a result of the Bragg scattering, a plane wave
along a new direction is generated. These two plane
waves can be written as

E; = A expli(wt - k; ' 1)], ¢3]

where j = 1,2, w is their common frequency and k, is the
corresponding wave vector. Conservation of momentum
requires that

k: =k, K. 2)

It is important to note that the photorefractive grating
induced by the interference intensity pattern, formed by
the incident beam and the scattered beam, has exactly the
same grating wave vector K. The photoinduced grating
is either in phase or 180° out of phase with the fixed grat-
ing?* (when we assume a phase grating), depending on the
direction of incidence. This leads to a strengthened
or weakened grating and nonreciprocal diffraction. The
nonreciprocity was observed in thick color-center holo-
grams.?®* A similar effect was also analyzed and ob-
served in Kerr media %’

The total index grating can be written as

n=no+n,cos K-r—inf(l+cosK-r)

+ [—"2—' exp(id,)l-qlT42 exp(—iK - r) + c.c.], 3)
0
where n, is the index of refraction in the absence of grat-
ings, n, and n, represent the amplitudes of the fixed phase
and absorption gratings, respectively (here we have as-
sumed that there is no phase shift between the phase and
absorption gratings, for simplicity), n, together with the
modulation depth represent the amplitude of the index
grating formed by the incident wave and the diffracted

© 1990 Optical Society of America
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Fig. 1. Schematic drawings of incident and scattered beams in
the case of (a) transmission gratings and (b) reflection gratings.

wave by the photorefractive effect, ¢ is the spatial phase
shift between the index grating and the interference pat-
tern, and I, is the sum of intensities of the two waves:

Io = |A)]? + |AJ®. @

All these amplitudes, n,, n,, and n,, are real numbers. In
photorefractive crystals for which diffusion is the domi-
nant mechanism for charge transportation, ¢ is either #/2
or —n/2, depending on the direction of the ¢ axis.

The coupled-mode equations can be derived by substi-
tuting Eq. (3) for the index of refraction in the wave equa-
tion. For simplicity we assume that the grating wave
vector is along the x direction, the angle between the two
waves is 26, and the 2z component of k; is 8,. For the slow-

varying approximation
2
d 2 Bjd ’ (5)
and the equality
h|? = (@*/c?)ne?, (6)

we can write the coupled-mode equations as

.. d 2 Ajl?
2‘BIEA1 = %[nonle'”l I:' A,

+ (non, = inonz)A; ~ 2ingn A, |, )

2 A 2
2‘52 Az = —g[nonl I ] 2
c Io

+ (non,, - inon.)A1 - 2inon.A2J y (8)

where c is the speed of light in vacuum. These two equa-
tions will be used in the following analysis for various in-
teraction configurations.

In Eq. (3), fixed gratings are represented by the terms
n,cos K:r and -in,(1 + cos K-r). The term n, x
cos K - ris a pure phase grating, while the term —in,(1 +
cos K * r) represents an absorption grating. The term in
square brackets, which is dependent on the product of the
two wave amplitudes, represents the photoinduced grat-
ing. The coupling of these two waves depends on their di-
rections of propagation. The diffraction properties of
fixed gratings in photorefractive media are thus divided
according to the categories transmission phase, transmis-
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sion absorption, reflection phase, and reflection absorp-
tion gratings.

Transmission Phase Gratings (n, = 0, 8,8, > 0)

For transmission gratings, the z component of the two-
wave vectors are of the same sign. Without loss of gener-
ality, we take

B1 = B2 = (2m/A)n;o cos 6. (9)

With Eq. (9), the coupled-mode equations can be written
in the form

4a, LlAzlz ( ,a)A a

A, = 7 1. —ilk-ig A, 2A1. (10)
d I* A2 .

4, -CAL, (K—z%)Al—-;-Az, ay

where T is the complex photorefractive coupling coeffi-
cient for TWM, (x — ia/4) is the complex Bragg coupling
coefficient, and « is the absorption constant:

. 211'”)

= — -“, 1
T=i A cos oe 12
L I
Acos @ 13)
and
47n,
" Acos# (14)

The coupled equations (10) and (11) can be written in
terms of intensities and phases of the two waves. We
write

= VI, exp(-ivy), (15)
A; = VT, exp(-iyy), (16)

and assume that the medium is lossless, i.e, n, = a = 0.
Equations (10) and (11) can be separated into

d LI, .
wh= AL 2« sin AYyV9L I, a7
d LI,
E1 T, + 2« 8in AUV, (18)
and
iw = p-L + x cos AYVIL/T (19)
" =P, w
4, - B L cos SuVETT (20
dz 2 = Il + ], /82,
where
Ay =y — o, (1)
and
21'"21 .
Y = 3eon 5" @, (22)
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cos . (23)

Note that y and B are related to T by F =y + i28. In
photorefractive crystals that operate by pure diffusion,
B = 0. Since wave A, is generated by Bragg scattering of
wave A, from the fixed grating, the phase of A; is auto-
matically locked to that of A,. Thus the possible solu-
tions to Egs. (19) and (20) are

Ay = /2 (24)
and
Ay = -7/2. 25)

With the boundary condition A;(0) = 0, we find that
Ay = /2 is a proper solution by examining the phase of
A, in Eq. (11). Substituting A¢ = 7/2 into Egs. (17) and
(18), we obtain

d L1,

a,__ - 2VTi,, 26
dzIl yI1 + I, VLI (26)
d LI, ViT

— = y—— . 27
a’ LA 2<VLL 27

Since I, + I is a constant, Eqgs. (26) and (27) are mathe-
matically identical to those for nonlinear optical Bragg
scattering and can be solved exactly.?® The solutions,
subject to the boundary condition A,(0) = 0, are written

L(z) = Iy cos’ u, (28)
I(2) = Iy sin u, (29)
where I, is the incident intensity and u is given by?®

tan{kz(1 — b%)'?] i
(1 - 53)'% - b tan[xz(1 — b9'?)

tan u = (30)

with
b = y/(4x). 31

The intensity of the diffracted wave as a function of z was
investigated in a previous study?®® for various values of b.
The parameter b is a measure of the strength of the pho-
torefractive grating relative to the fixed grating. It is
important to note that b in this paper is independent of
the intensity, whereas b is proportional to I, in Kerr media.

The diffraction efficiency is a nonlinear function of b.
For a crystal with interaction length L, the diffraction ef-
ficiency is

IL)

n= = sin u(z = L). (32)
Iy

When b >> 1 and «xLb >> 1, the agymptotic form of n can
be written as

n=1- Zlb—i[l ~ 4b? exp(~2xLb)]?

=1- z%[l - 8b7 exp(-2xLb)]. (33)

The asymptotic form for b — - can be written as
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1
n= 4%2[1 + W 2 exp(—2xL|b|)]- (34)
Here we note that the expressions are slightly different
from those that appeared in Egs. (18) and (19) of Ref. 26.
Figure 2 depicts the diffraction efficiency as a function of
b for different values of kL. For b > 0 the photorefrac-
tive grating is in phase with the fixed grating. When xL
is small the presence of the photoinduced grating
strengthens the grating, and the diffraction efficiency in-
creases as a function of 5. When «L = #/2 the diffraction
efficiency is 1 at b = 0 (no photoinduced grating). The
diffraction efficiency decreases as b increases from b = 0,
reaches a minimum at b = 0.89, and then increases to 1
when b is extremely large. When «L > =, the diffraction
efficiency will oscillate between 0 and 100% within
|bl < 1. This oscillatory behavior can also be seen in
Fig. 2 of Ref. 26, since I, and I, are periodic functions of 2
for =1 < b < 1. The sign of the parameter b depends on
the direction of incidence. Thus if b is positive for an
incident angle of 6, it will be negative when the beam is
incident at an angle of —6. The different values of n for
+b and -b reflect nonreciprocal diffractions caused by
TWM. In other words, the diffraction efficiency of fixed
gratings in photorefractive media depends on the direc-
tion of incidence at Bragg angles.

Figure 3 shows the grating amplitude as a function of z.
When b > 0, eg., b = 1, the photoinduced grating is in
phase with the fixed grating; therefore the grating is
strengthened. When 4 < 0, e.g., b = —1, the photoin-
duced grating is out of phase with the fixed grating;
therefore the grating is weakened. From the curve for
b = 10, we notice that at the beginning the photoinduced
grating is in phase with the fixed grating; therefore the
grating is strengthened. At the point in gpace where all
the incident power is converted into a diffracted beam, i.e.,
I, = I; and I; = 0, the photoinduced grating disappears.
After this point the photoinduced grating is out of phase
with the fixed grating. Physically, this is equivalent to
the case in which the beam is incident from the other input
port (i.e., at —8). When the photoinduced grating cancels
the fixed grating, there is no more diffraction, and thus
the grating amplitude stays 0. The curve for b = ~10 is
the same as the curve for b = 10 after the point n = 100%.

.:»7-7’7/’2_: T

e : : : B 1

Fig. 2. Diffraction efficiency as a function of b for transmission
gratings with different values of xL. Sohd curve, xL =
#/6; dotted~dashed curve, xL = /2; dashed curve, xL = .
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Fig. 3. Grating amplitudes as functions of z for b equal to 10, 1,
0, -1, and ~10 in the case of transmission phase gratings.

Photorefractive media and Kerr media?® can be distin-
guished by the different expressions for b, i.e., Eq. (31) in
this paper and Eq. (16) in Ref. 26. In Kerr media b is a
function of intensity; therefore the diffraction efficiency
depends on the incident intensity nonlinearly. In pho-
torefractive media there is no such nonlinearity.

Transmission Absorption Gratings (n, = 0, B,8; > 0)
Nonreciprocal diffractions also occur in the case of ab-
sorption gratings. When a # 0, the coupled-mode equa-
tions (10) and (11) cannot be easily solved analytically;
however, nonreciprocal behavior can still be seen in the
numerical solutions. We have solved the coupled-mode
equations (10) and (11) by using the fifth-order Runge-
Kutta method with adaptive step size. In the general
case, the parameter b is defined as

Y

b= [(4x)? + a’]m' (35)

Figure 4 shows the intensities of the incident and dif-
fracted beams as functions of z for various values of b,
where the fixed grating is a pure absorption grating
(x = 0). Similar to the case of phase gratings, diffraction
from one input port (b > 0) is enhanced and that from the
other input port (b < 0) is suppressed, as compared with
the case when TWM disappears (b = 0). ~ The diffraction
efficiency as a function of b is plotted in Fig. 5 for various
values of aL. We note that the nonreciprocity in absorp-
tion gratings is quite strong.

For fixed gratings with both phase and absorption vari-
ations, the diffraction property is a combination of that of
the pure phase and pure absorption gratings. As an ex-
ample, we give the numerical solutions for x = cos(n/30)
and a = 4 sin(n/30). Figure 6 shows the intensities of
the incident and diffracted beams as functions of z for
various values of b, and Fig. 7 shows the diffraction effi-
ciency as a function of b for various values of L. In the
numerical calculations, the units of «, a, and z are chosen
arbitrarily, since xz and az are dimensionless. Aguain,
the diffraction is nonreciprocal.
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Reflection Phase Gratings (n, = 0, 8,8, < 0)
For reflection gratings, the z components of the two wave
vectors are of opposite sign. They are given by

B1 = =B, = (2m/A)ng cos 6. (36)
With Eqgs. (7) and (8), the coupled-mode equations can be
written in the form
4, _ LA, _ ( _ -g)A _e
dZAl = 2 Io Al K 1 1 2 2 Al, (37)
d I* A2

—A; = ——

dz 2 Io

A; + i(x - i%)m + —‘2’-A2. (38)
Following similar steps as in transmission phase gratings,
the coupled equations for the intensities of the two waves
can be found as

d, Ll —
dle- 711+12 2«VL1,, (39)

1.0

{a)

0.0
1.0

Intensity
Y ®

[+ X+ I O
1.0 :

(e)

0.0

0.0 1.0 290 3.0
Fig. 4. Intensities of the incident and diffracted beams as func-
tions of (a/4)z for transmission absorption gratings (x = 0) with
various values of b. Solid curves, I,; dotted curves,l;. (a)bd =1,
(b)b=0,(c)b=-1.
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Fig. 5. Diffraction efficiency as 8 function of b for transmission
abeorption gratings (x = 0) with various values of aL. Solid
curve, al = 0.27; dotted curve, al = 0.47; dashed curve,
al = 0.87
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Fig. 6. Intensities of the incident and diffracted beams as func-
tions of z for fixed gratings with both phase and absorption vari-
ations [k = cos(n/30) = 0.9945, a = 4 sin(7/30) = 0.4181] and
various values of b. Solid curves, 1,; dotted curves, I;. (@)b =1,
(b)b=05()b=0,(d)b=-05,(e)b = -1. The units of , a,
and z are chosen arbitrarily, since xz and az are dimensionless.
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Fig. 7. Diffraction efficiency as a function of b for fixed grat-
ings with both phase and absorption variations [x = cos(n/30) =
0.9945, a = 4 8in(n/30) = 0.4181)] and various values of L. Solid
curve, L = n/6; dotted-dashed curve, L = 7/2; dashed curve,
L = m The units of x, a, and L are chosen arbitrarily, since «z
and az are dimensionless.

d,__, hh
dz’ 71""12

In deriving Eqs. (39) and (40), we used ¢ = #/2 and
Ay = n/2, which is one of the two solutions (Ay = 7/2 or
Ay = —n/2) for the equations of phase change.

Equations (39) and (40) can be solved analytically. The
solutions with the boundary condition I, = O atz = L are
given by

- 2KVI)I:. (40)

Ii(z) = C cosh® u, (41)
I(z) = Csinh? i, (42)

where C is the transmitted intensity at 2 = L, and u is
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related to z by

e?u

{cosh(2u) + b sinh(2u)]®

= exp[—2k(_1 - bz)(z - L)]1
43

where b was given by Eq. (31). Equation (43) must be
handled with care when |b| = 1. The solution for u as a
function of z when b = 1 can be written

u=2x(l - 2) — Ya+ Vae~*, (44)
whereas, when b = -1,
u=2(L - 2) + Vo — Vae**, (45)

Figure 8 shows the intensities as functions of z for b = 1,
b=0, and b = ~1. We note that backward coupling of
energy is enhanced for the case when b > 0.
The diffraction efficiency is given by the expression
<BO) ok uc =

n= 1,0) tanh® u(z = 0). (46)
Given a xL,u(0) can be solved from Eq. (43). For ex-
ample, when b = 1, according to Eq. (44), u(0) is given by

u=2kL - Y%+ Vet a7

We note that when xL > ' u(0) is positive, and e™* be-
comes extremely small when 2«<L - % > Y. Therefore,
when xL > Y,u(0) = 2xL — % and n = tanh?®(2«L ~ %).
The diffraction efficiency approaches 100% exponentially
as 2xL - Y4 >> 1; ie,, xL >> %. Figure 9(a) shows the
diffraction efficiency as a function of xL for b = 0,
b= =%l,andalsoforb = 2. Whenb = 0, n = tanh® xL.
When b >> 1 and «Lb >> 1, the asymptotic expression for
the diffraction efficiency is

n =1 — 2b exp(—2«Lb). (48)
We note that the diffraction efficiency approaches 100%

i

}

} {s)
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z

Fig. 8. Intensities of incident and diffracted beams as functions
of z for reflection phase gratings (x = L,a=0). (a)db=1,
(b)b=0,(c)b=~1.
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Fig. 9 (a) Diffraction efficiency for reflection phase gratings as
a function of «L for b equal to 0, =1, and +2. (b) Diffraction
efficiency as a function of b for reflection phase gratings with
various values of xL. Dotted curve, xL = Y%; dotted-dashed
curve, kL = Y; dashed curve, xL = 'A.

exponentially as b increases. When b — —, the asymp-
totic expression for the diffraction efficiency is

1
n = gl = 2 exp(-2«Lib)]. (49)

As 2«L|b] >> 1, n = Vb for all xL. Figure 9(b) shows the
diffraction efficiency as a function of b for various values
of xL. Comparison of Figs. 9 and 2 reveals that the dif-
fraction is nonreciprocal for both transmission and reflec-
tion gratings. The oscillatory behavior in Fig. 2 does not
occur in Fig. 9 because the intensities in Eqgs. (41) and (42)
are not periodic functions of z.

Figure 10 shows the grating amplitude as a function
of z. Similar to the case of codirectional diffractions, the
photoinduced grating is in phase with the fixed grating
when b > 0 and out of phase when b < 0, and therefore
strengthens or weakens the fixed grating, respectively.
We note from Fig. 10 that the grating amplitude for b = 1
and that for b = ~1 are not symmetric with respect to the

e o T
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value that corresponds to b = 0. This is because the pho-
toinduced grating is proportional to |A,A;|/(I, + 1),
which depends on the sign of b as well as its absolute value,
as shown in Fig. 8. This asymmetric behavior also occurs
in the transmisgion phase gratings, as shown in Fig. 3.

Reflection Absorption Gratings (n, = 0, 8,8, < 0)

For absorption gratings, closed-form solutions of the cou-
pled equations are not easily available. The diffraction
properties of these gratings can be studied by using nu-
merical techniques. We solved the coupled-mode equa-
tions (37) and (38) numerically with a nonzero absorption
constant. Since the photoinduced grating depends only
on the modulation depth, Egs. (37) and (38) are scaling
invariant. In other words, if A, and A, are solutions to
Egs. (37) and (38), cA; and cA; are also solutions to these

150[ : —
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Fig. 10. Grating amplitudes as functions of z for b equal to 10, 1,
0, -1, and ~10, in the case of reflection phase gratings.
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Fig. 11. Intensities of incident and diffracted beams as func-

tions of 2 for reflection absorption gratings (x = 0,a = 4).
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Fig. 12. Diffraction efficiency as a function of 4 for reflection

absorption gratings (x = 0) with various values of aL. Dotted

curve, aL = %; dotted-dashed curve, aL = 1; dashed curve,

al = 2.

two equations, where ¢ is a complex constant. Therefore
we can reduce the two-point boundary-value problem to
the one-point one. Numerical integration starts from
z = L, whereA; = 0and A, is set tobe 1. As we go from
z=L to z =0, complex A;(z) and A,(z) are obtained.
Then the intensities I;(z) and /,(z) are normalized by tak-
ing the normalized I,(0) to be 1.

For the case of a pure absorption grating (« = 0), Fig. 11
shows the intensities as functions of z. We note that I
grows from 0 as the diffracted beam propagates from
z=L to z=0. Because of absorption, the growth is
slower than that for phase gratings. The incident beam /;
decays as it propagates from z = 0 to z = L because of
both energy exchange with I; and absorption. Figure 12
shows the diffraction efficiency as a function of b for vari-
ous values of aL. The diffraction property is similar to
that in the absence of absorption (Fig. 9), except that be-
cause of the loss in the medium the diffraction efficiency
cannot reach 100%. The nonreciprocity, in the case of
absorption gratings, can be explained by the phase shift
between the photoinduced phase grating and the interfer-
ence pattern. The fixed absorption grating provides a
source for generating the second beam when the incident
beam satisfies the Bragg condition.

CONCLUSION

In conclusion, we analyzed the diffraction properties of
fixed gratings in photorefractive media with the considera-
tion of TWM between the incident and the diffracted
waves. Both codirectional and contradirectional diffrac-
tions were solved, including the presence of both phase
and absorption gratings. The results indicate that fixed
gratings in photorefractive media exhibit strong optical
nonreciprocity, which cannot be explained without consid-
ering TWM. Since the photorefractive grating depends
on the modulation depth instead of the intensities, there is
no optical nonlinearity like that which appeared in the
Kerr media.?®* Our analysis can be applied not only to
fixed photorefractive gratings but also to those that may
be fabricated artificially.

In this paper we considered only diffraction properties
of fixed gratings with exact Bragg match, and the pho-
torefractive media were assumed to be in the regime of
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pure diffusion. Bragg mismatch (Ak # 0) as well as arbi-
trary phase shift (¢ # m/2) are important issues that will
affect the diffraction properties of fixed gratings in pho-
torefractive media.
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We investigate the diffraction efficiency of strong volume holograms in which the coupling parameter is several
times that needed for maximum diffraction efficiency. We discuss the implications of our findings on photorefrac-

tive implementations of various neural network systems.

The study of volume gratings has led to useful applica-
tions in many areas of optics, including integrated
optics, acousto-optics, and holography. In most situ-
ations the coupled-mode analysis of volume holograms
established by Kogelnik! accurately describes the dif-
fraction behavior of a thick hologram and predicts a
diffraction efficiency that is a periodic function of the
index perturbation amplitude-thickness product.
The diffraction efficiency  from a volume index grat-
ing with the direction of the readout beam tuned for
the Bragg condition is given by

n = exp(—ad/cos 8)sin?(xAnd/X\ cos 6), (1)

where «a is the absorption coefficient, d is the thickness
of the hologram, An is the amplitude of the index
perturbation, and 6 is the angle of incidence of the
readout beam with respect to the normal to the surface
of the hologram (we assume an unslanted grating); 6
and A are assumed to be measured inside the medium.
Typically the amplitude of And realized in most holo-
graphic materials is such that only the increasing part
of the first period of 5 is observed. As the grating
amplitude and/or the thickness of the grating is in-
creased beyond this regime, further coupling between
the two waves results in a reversal of the energy-trans-
fer direction to yield a drop in the diffraction efficien-
cy as predicted by Eq. (1).

We have been able to observe this effect in a photo-
refractive barium titanate (BaTiO;) crystal. The use
of photorefractive crystals for such a purpose is partic-
ularly appropriate since the dynamic nature of photo-
refraction allows us to record easily and accurately the
temporal evolution of An, the index change. For ex-
ample, by monitoring n during the holographic record-
ing process, we are able to observe the functional de-
pendence of n on And from And = 0 to saturation.
Although n cannot exceed unity, a large saturation
value of And is desirable because it corresponds to a
large dynamic range for hologram recording, which in
turn implies that a large number of holograms may be
recorded. By monitoring the time dependence of 7,
we are able to estimate the saturation value of And in
our BaTiO; sample and calculate the storage capacity
of the crystal for dense holographic interconnections.

0146-9592/90/060344-03$2.00/0

Such interconnections are useful in parallel informa-
tion-processing applications such as artificial neural
networks.23

In a photorefractive crystal the steady-state value of
An is proportional to the modulation depth of the
intensity interference pattern responsible for writing
the hologram. Hence, by manipulating the intensities
of the writing beams, one can monitor the functional
relationship between An and the diffraction efficien-
cy. For a fixed writing-beam modulation depth, the
entire range of index perturbation amplitudes from
zero to the maximum attainable value can be scanned
by performing a transient experiment in which one of
the two writing beams is abruptly turned on and then
turned off after permitting the grating to saturate.
One beam is left on to ensure a zero-grating initial
condition and also to provide an erasure mechanism
after the other beam is turned off. Since the diffrac-
tion efficiency is a periodic function of An, for a suffi-
ciently large saturation value of An the diffracted in-
tensity will oscillate as a function of time during both
formation and decay of the grating. The theoretical
predictions of the temporal behavior of the index grat-
ing amplitude and its associated diffraction efficiency
are plotted in Figs. 1(a) and 1(b), respectively. We see
that the larger the saturation value of An, the more
oscillations are present in n. The plots are shown for
two values of the strength parameter given by ¢ =
xlAnd/\ cos 6. The saturation value of An can be
easily controlled by adjustment of the writing-beam
intensities.

We have written holograms in single-crystal BaTiO;
using an argon-ion laser (A = 514.5 nm) with a read
beam derived from a He-Ne laser (A = 633 nm). The
experimental apparatus, shown in Fig. 2, is described
below. The writing beam was polarized in the ordi-
nary direction with respect to the crystal in order to
preclude beam-coupling effects so that a uniform grat-
ing could be written in the crystal. The width of the
writing beam was approximately 1 mm, and the power
levels that were used are indicated in Fig. 3. The
readout beam (=1-mm width, power level ~95 uW) is a
He-Ne beam at A = 633 nm that is polarized in the
extraordinary direction and aligned at the Bragg angle

© 1990 Optical Society of America




SC5544.FR

(@

tt

Fig.1. Theoretical predictions of the temporal behavior of
the strength parameter and diffraction efficiency during ho-
logram development and erasure. Plots are given for two
steady-state value of ¢: @m.x = x/2 (dotted curve) and ¢,
= 3x/2 (solid curve). The time is shown in units of the
photorefractive time constant. (a) Growth and decay of the
strength parameter ¢. (b) Normalized diffraction efficiency
during growth and decay of the grating [corresponding to
depth parameter plots of (a)).

of the hologram. This combination of ordinary-
extraordinary polarizations for the write-read beams
gives maximum diffraction efficiency with minimum
coupling. The relative intensities of the two writing
beams can be adjusted with the variable attenuator
realized by a wave plate-polarizing beam splitter com-
bination. The 4-mm-thick BaTiO; crystal is a spe-
cial-cut variety whose orientation was selected to ac-
cess the large r(; coefficient [the ¢ axis is oriented 30°
from the cut face; see Fig. 2(b)].* The special crystal
cut effectively gives a large dynamic range for the
index variation An that we can write.

The two writing beams were first turned on, and the
readout-beam direction was adjusted for maximum
diffraction efficiency. The intensity of one of the
writing beams ( # 1) could be varied with a wave plate-
polarizer combination. After shutting off beam #1
and waiting until the hologram was completely erased
by the other beam, we abruptly turned beam #1 on
again. After a steady state was achieved in the dif-
fracted intensity, beam #1 was again shut off. The
temporal evolution of the diffracted power exhibited
oscillatory behavior, indicating that the An was varied
through several peaks of the diffraction efficiency
curve during the development and erasure of the holo-
gram. The experiment was repeated for several dif-
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ferent write-beam intensity ratios. The diffraction
efficiency record for a near-unity beam intensity ratio
exhibited the largest number (3) of oscillations [Fig.
3(c) corresponds to the near-unity beam intensity ra-
tio hologram, and Fig. 3(a) corresponds to the smallest
beam ratio hologram; note that the latter exhibits no
oscillations during either formation or decay). The
oscillatory behavior compares favorably with the theo-
retical plots of Fig. 1, except that the experimental
oscillations do not dip down to zero and the maxima
have different values. This may be due to two-wave
mixing between the reading beam and its diffracted
component, the small but finite two-wave mixing be-
tween the two writing beams, and/or imperfections in
the overlap between the hologram and the read beam.
The maximum diffraction efficiency in each case was
~25%, which differs from the ideal unity value owing
to absorption, reflection losses, scattering, and posi-
tion errors in setting the readout beam so that it maxi-
mally overlaps with the grating.

Volume holograms have long attracted interest for
information-storage applications owing to their poten-
tially large storage capacity and more recently as an
interconnection device for neural networks. In such
applications, holograms are superimposed within the
same crystal volume where, for example, the reference
beam can be angularly multiplexed to distinguish be-
tween the various holograms. The corresponding in-
dex perturbation of such a superposition can be ex-
pressed by

M
anfr) « Y fn(), @

ma]

where fn(r) is the contribution of the mth hologram
and r is the spatial coorcinate within the volume. Itis
important to gauge the maximum number of holo-
grams, M, that can be recorded in a given crystal.
Although other constraints such as that due to geome-

Argon 514.5 nm

Fig. 2. Apparatus for writing and probing deep holograms.
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Fig.3. Diffraction efficiencies recorded during writing and erasure of gratings. The peak diffraction efficiency in each case is
approximately 25 + 3% (diffraction efficiency is defined as the ratio of the input readout power to the diffracted power); the
horizontal scale is 793.5 msec/division. (a) P; = 24 mW, P; = 2.1 mW; (b) P, = 27.8 mW, P; = 10.8 mW; {(c) P, = 20.7 mW, P, =

20.8 mW.

rry exist,>? we are interested in the limit on M as
dictated by the finite dynamic range of photorefrac-
tive crystals. In particular, we use the maximum in-
dex modulation that we observed in our strong holo-
gram experiments in conjunction with a reasonable
figure for the smallest index modulation that can be
detected to calculate the dynamic range that is avail-
able in BaTiO,.

As is shown in Fig. 3(c), a hologram recorded at
unity modulation depth in our BaTiQ; sample
achieved the third maximum of the diffraction effi-
ciency function given in Eq. (1). This result implies a
saturation strength parameter of ¢p,, = 57/2 (for an
approximate interaction length of d = 4 mm, which is
the crystal thickness, this value of ¢ corresponds to An
= 1.67 X 1074). Given a minimum allowable diffrac-
tion efficiency per hologram of #min, the minimum
allowable value for the strength parameter can be
found in the small perturbation regime of Eq. (1) to be
Swin *© (Nmin)'/2, where nu;, is determined from noise
sources in the apparatus such as scattering and detec-
tor noise. Although the specific value of ny,;, is depen-
dent on the measurement environment (e.g., scatter-
ing and detector noise), the value of n,i, = 0.01% (1-
mW/cm? read beam resulting in a 100-nW/cm?
diffracted beam) is reasonable. The ratio of these two
numbers gives the index amplitude dynamic range,

Rmlua S22 50 )
Pnin (nmin)

Turning now to the multiple-hologram case, this
dynamic range must be greater than or equal to the
average amplitude excursions of the total superposi-
tion An(r) given by relation (2) (normalized by the
amplitude of each component of the sum) in order to
maintain accuracy. In almost all cases of interest, the
individual terms of the sum of relation (2) are mutual-
ly uncorrelated, so that the normalized amplitude ex-
cursion is M2, Equating the dynamic range to M1/
yields @max = dpminM2, from which we get M., = R2 =

106, the maximum number of holograms that can be
supported. Unfortunately, such a large number is
difficult to realize in practice because of the additional
constraint placed by incoherent erasure during the
sequential exposure process used to achieve the super-
imposed set of holograms of relation (2). In particu-
lar, it is shown in Ref. 5 that the exposure schedule
that must be followed in order to yield a set of holo-
grams with equal amplitudes results in a strength pa-
rameter equal to ¢ma:/M for each component. Under
this constraint the maximum number of holograms is
determined by the detectability of each component, so
that

¢mu

7 = ¢min) (4)

which yields My,,, = R = 103. This value is consistent
with the discussions and experiments found in Refs. 6
and 7.
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Optical pattern classifier with Perceptron learning

John H. Hong, Scott Campbell, and Pochi Yeh

An optical reslization of a single layer pattern classifier is described in which Perceptron learning is
imp’emented to train the system weights. Novel use of the Stokes's principle of reversability for light is made
to realize both additive and subtractive weight modifications necessary for true Perceptron learning. This is
achieved by using a double Mach-Zehnder interferometer in conjunction with photorefractive hologram
recording. Experimental results are given which show the high quality subtractive changes that can be made.

I. Introduction

The processing of information in neural networks
differs from conventional approaches in that the inter-
connections play the dominant role rather than acting
as mere communication pathways. The fact that this
interconnection intensive computation can be
achieved using optical techniques was realized by
many, holographic techniques being the most promis-
ing because of the potentially high capacity that is
achievable.!-* The volume hologram in particular of-
fers the most compact means of storing interconnec-
tion patterns.® Although the interconnection pattern
can be computed and fixed in such holograms for pre-
scribed tasks in which the problem parameters do not
change, the idea of a neural network that can be adapt-
ed on-line to solve problems is especially appealing.

Shownin Fig. 1 is a diagram depicting the most basic
one-layer network with N input elements and one out-
put. The weighted sum of the input pattern elements
is thresholded to yield the output

~ .
el - 1ifz>0
¥ g(_ u,x‘) I {0 otherwise

=1

1

where g(2) is the thresholding nonlinearity, w; is the ith
weight, and x; is the ith element of the input pattern.
Such a system can be used to dichotomize a set of
patterns into two prescribed classes, and more com-
plex, muitiple layered networks can be built up using
this as the basic building block. Also, extensions to
multicategory pattern classification can be achieved
by having a matrix of weights and a multiplicity of
output units as is discussed in Sec. II1.

The authors are with Rockwell International Science Center, P.O.
Box 1085, Thousand Oaks, California 91360.

Received 25 August 1989.

0003-6935/90/203019-07$02.00/0.

€ 1990 Optical Society of America.

Simple learning algorithms can be characterized by
the update equation:

w,p+1) =w(p) + alp)x,(p), (2

where w;(p) is the ith weight at time p, x;(p) is the ith
element of the pattern shown at time p, and a(p) is a
multiplier that depends on the particular learning al-
gorithm. This includes most deterministic algo-
rithms, where some kind of a descent procedure is
involved and incremental changes are made to the set
of weights during each iteration. For perceptron
learning,*

0 if output y(p) was correct

a(p) = [1 if y(p) = 0 but should have been 1
=1if y(p) = 1 but should have been 0. (3)

The threshold bias can be absorbed into the patterns
by choosing one element of each pattern to be always
equal to a nonzero constant. Note, that both additive
and subtractive changes to the weights w, must be
made to implement the algorithm directly. Although
multiple layer networks require more complex rou-
tines such as Back Propagation, most algorithms share
the common requirement of bipolar weight changes.

it. Optical iImplementation

The basic components to implement the network
described above are an input device to convert the
patterns into the appropriate format (e.g., electrical to
optical, incoherent to coherent opticai), an intercon-
nection device, and a thresholding device for the out-
put unit. The function of the interconnections in this
context is to simply compute the inner product be-
tween the input pattern x, and the weights w,. Volume
holograms can be used to implement such functions® in
a way that is extendable to the multiple category case
(i.e., multiple inner products). Consider the arrange-
ment shown in Fig. 2 where a holographic medium is
positioned at the Fourier plane of lens L1. The input
pattern is displayed in the apatial light modulator
(SLM), which is positioned at the front focal plane of

10 July 1990 / Vol. 28, No. 20 / APPLIED OPTICS 3019
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Read-out

Recording
Fig. 2. Inner product computation using volume hologram.

the same lens. A hologram is exposed with a pattern
w(x,y) in the SLM and a reference plane wave as
shown. After development, another pattern f(x,y) is
loaded into the SLM. The light passing through the
SLM is diffracted by the hologram and the diffracted
amplitude can be shown to be the inner product be-
tween the two patterns w and f.> Clearly, this is an
overkill since the same function could have been
achieved with a planar hologram. However, in the
multiple category case where a number of different
inner products need to be computed simultaneously,
the added dimension afforded by the volume hologram
is necessary; unless one resorts to spatial multiplexing
of the planar hologram.5¢ Multiple category classifi-
cation is achieved by what is essentially an angular
multiplexing of the volume hologram. This is shown
in Fig. 3 where multiple holograms are written using
the various reference plane waves. For the moment,
we focus on the single output case and discuss general-
izations for the multiple category problem in Sec. III.

By virtue of their dynamic nature, photorefractive
crystals are ideal candidates for the holographic medi-
um. Inaddition, crystalssuch as LiNbO;, BaTiO; and
SBN are by far the moast efficient holographic media
requiring relatively low optical intensity levels (e.g., 1
W/cm?); the most efficient photorefractive crystals ex-
hibit photosensitivities approaching that of photo-
graphic film. The holographic process records both
modulus and phase of patterns and, thus, holographic
interconnection techniques can be used to store bipo-
lar valued weights and adaptable changes, which are
either subtractive or additive, are possible.

3020 APPLIED OPTICS / Vot. 29, No. 20 / 10 July 1990
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2: w(xy) SLM: #(x.y)
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Fig. 3. Multiple output holographic system: (a) recording (point

source 1 is activated when w,(x,y) is in SLM and point source 2 is

activated when wy(x,y) is in SLM); (b) read-out (y; = <w,,f>and y-
= <wz.{>).
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Fig. 4. Grating phase control using phase shifting device.

The Perceptron implementation reported by Psaltis
et al.? employed photorefractive crystal for adaptable
interconnections but used incoherent erasure to
achieve subtractive weight changes. In their system,
the photorefractive crystal was placed at the image
plane of the SLM and a device (movable piezoelectric
mirror) was used to provide either a coherent reference
or an incoherent one. For additive changes to the
hologram, a coherent reference was provided so that
the hologram is strengthened, but for subtractive
changes, the reference beam was made to be incoher-
ent with respect to the object beam 8o that nonuniform
incoherent erasure resulted. This is roughly equiva-
lent to providing a weight bias in which erasure will
result in subtraction. Such methods involving inco-
herent erasure do not fully take advantage of the phase
sensitive nature of holography.

To accurately implement the learning algorithm de-
scribed by Eq. 2 and to exploit the hologram’s coherent
capability just described, a method by which both
subtractive as well as additive changes to the weights
can be made must be devised. Physically, such a
method would amount to a multiple exposure holo-
gram in which each exposure results in a grating (index
grating in the case of photorefractive crystals) whose
phase is either 0 or x (relative phase difference is ).
An obvious method of achieving this is shown in Fig. 4
in which two coherent waves intersect in a medium to
create a holographic grating. One of the beams passes
through a phase shifting device (e.g., an electrooptic




SC5544.FR
light
source 1
light c3——shutter 1
source 2 W= gm
shutter 2
holographic
medium
Fig.5. Holographic phase control using Stokes’ principle of revers-

ibility.

phase modulator, liquid crystal phase modulating de-
vice, piezoelectric movable mirror) to acquire a phase
of either 0 or = relative to the other writing beam.
After writing a hologram with one phase setting, holo-
graphic subtraction can be performed by using the
other phase setting in the subsequent exposure and
addition can be performed by using the original phase
setting. Such phase shifting devices, however, may
suffer from inaccuracies and also performance may
degrade with time depending on various device charac-
teristics (e.g., backlash in piezo mirrors, voltage inac-
curacies in phase modulation devices (electrooptic, lig-
uid crystal). Also, the continuous phase variability of
these devices is an overkill in the present application in
which only two phase settings, 0 and =, are required.
In this paper, we describe a system that relies on a
fundamental principle in optics known as the Stokes’
principle of reversability’® and a pair of shutters for
the phase control.

The basic principle of operation of the phase control
system can be described with the help of Fig. 5. This
configuration is known as a double Mach-Zehnder in-

| Argon fon: 514.5nm

‘l‘ Rockwell International

Science Center

terferometer because both input ports are used. The
beam from laser source 1 (marked by the dotted line) is
split into two paths by the dielectric beam splitter to
intersect within the holographic medium to create a
grating. Another laser source (which can be derived
from laser source 1 or a separate laser with the same
nominal wavelength) is positioned so that the direc-
tions of the beams transmitted and reflected by the
beam splitter traverse precisely the same paths as
those resulting from source 1. The Stokes’ principle
governs the relationship between the reflection and
transmission coefficients seen by source 1 (call them r
and ¢, respectively) and those seen by source 2 (~ and
t’). Simple arguments” using this principle lead to the
result

t=¢ andrt®*+rt" =0, 4)

Note that since the amplitude of the hologram due to
source 1 is proportional to rt* and that due to source 2
is proportional to r't*, the two gratings are mutually
out of phase. Of course, the accuracy of this result is
dependent on how well the beams can be aligned.
Such a phase shift of » has been employed for the
parallel subtraction of images.*

To quantify the accuracy that can easily be obtained
in the laboratory, we performed the experiment
sketched out in Fig. 6. An argon ion laser beam (A =
514.5 nm, coherence length ~1 ¢cm) was split into two
paths containing shutters. Each of the two beams
(serving as the light sources 1 and 2 of Fig. 5) is directed
into another beam splitter whose transmitted and re-
flected components are recombined with an output
beam splitter. This part of the apparatus is the double
Mach-Zehnder interferometer mentioned earlier.
The combined result is viewed along a line with a linear
detector array to give the scanned image intensity
distributions shown in Fig. 7. When shutter 1 is on
(and 2 is off), the distribution is nearly » out of phase
with that corresponding to shutter 2 on (and 1 off); we

Shutter

Shutter|
th length difference > coherence
ngth

/

Microscope Obj.

Observation
Plane Fig. 6. Experiment to view holographic fringes.
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c

Fig. 7. Scanned image of intensity grating: (a) shutter 1 on; (b)
shutter 2 on; and (c) both shutters on.

estimate that the error is to within 3° due to alignment
errors and also measurement errors. As expected,
when both shutters are on, the result shown in Fig. 7(c)
is a fringe-less distribution with the nonuniformity
due to the gaussian nature of the laser beams.

Fig.9. Monitored diffraction efficiency (see text).

To investigate actual subtraction of index holo-
grams with the described apparatus, we used photore-
fractive BaTiO; (6 mm X 6 mm X 2 mm) as the holo-
graphic medium in the arrangement shown in Fig. 8.
Again, two beams derived from the same Argon laser
served as the two light sources controlled by shutters 1
and 2. The writing beam sources were of ordinary
polarization with respect to the crystal to minimize
effects due to beam coupling.® The crystal was placed
at the position where the two writing beams intersect
to form a photorefractive grating and the diffraction
efficiency of the resulting hologram was monitored
with a read beam supplied by a He-Ne laser (A = 633
nm). First, a hologram was exposed with shutter 1
open and 2 closed. As soon as the hologram reached
nearly full strength, shutter 1 was closed and 2 opened
to allow the new hologram to develop. This sequence
was repeated and the diffracted read beam intensity
recorded as shown in Fig. 9. As is apparent, as soon as
shutter 1 is closed and 2 is opened, the diffracted
intensity diminshed to reach a complete null after
which it rises again to reach saturation. This phenom-

Argon lon:
514.5nm
N
@
Pol.
Shutter
1
N 0 . Photodetector
Shutter | BS 3
2 :
; scope
C
axis He-Ne
_______ 633nm Fig. 8. Ezxperiment to view sub-
-------------------- traction of holograms using a
BaTiOa Pol. BaTiO. crystal.
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enon is due entirely to the fact that the newly exposed
hologram because shutter 2 is = out of phase with
respect to the initial hologram, which results from
shutter 1 being open (the quenching of the hologram is
actually aided in part by incoherent erasure).

We now describe the overall optical system, shown in
Fig. 10, in which an arrangement to allow for multiple
exposures of a photorefractive hologram is diagramed.
This setup uses the holographic phase control method
just described. If the SLM contains a picture whose
amplitude distribution is given by a(x’,y’), the grating
amplitude written in the crystal due to source 1 can be
described by

Alx,y)

—_— (5)
1, + 1Ay

Ty (x,¥) = K(1 ~ exp(—t,/7))

where 7 is the time constant of the medium (assuming
intensity is kept constant for all exposures), ¢, is the
exposure time, A(x,y) is the Fourier transform of
a{x’,y’}), I, is the reference beam intensity, and K is a
constant determined by the characteristics of the par-
ticular crystal. If, without changing the picture,
source 1 is turned off and source 2 is turned on, the new
grating can be shown to be proportional to the first
with the opposite sign. In particular, if the second
exposure time duration is ¢,, then

I'(x,») = K{(1 — exp(—¢,/7)) exp(—t./7)

A(x,y)

——= . ()
I+ AGx )

= (1 = exp(=t,/T)}

True subtractive weight changes are thus possible
without the use of external phase shifters.

Note, in Eq. 6 that as the new out of phase hologram
is being written, the initial hologram is partially erased
due to the presence of the writing beams (incoherent

LIGHT SOURCE 1
1
1

= suurTen s

READ WRITE
CONTROL SHUTTER

PHOTOREFRACTIVE

CRYSTAL

10 DETECTOR

ARRAY
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erasure). This will modify the actual learning algo-
rithm that is used in the following way. The weight
update equation in comparison with the ideal rule of
Eq. 2 is given by

w,(p +1) = exp(~t,/7)u,(p) + [1 = expi~t,/7)]a(p)x,(D), (7)

where t. is the exposure time, so that the old weight
distribution is diminished slightly as new holograms
are written. This forgetting effect actually may prove
to be beneficial in the optical implementation where
the amplitude of the hologram has a finite dynamic
range, since it helps to somewhat normalize the weight
values during learning to keep the crystal from saturat-
ing. The output of the photodetector is given by

¥(p) = I<w,(p)x,(p)>. (8)

System simulations were performed using Eqs. 7and 8
as the model, and the learning curve thus obtained is
shown in Fig. 11(a), which verifies that, with the de-
scribed modifications, the Perceptron training scheme
works well. The result of the example shown in Fig.
11(a) was obtained for the task of dichotomizing a set
of twelve randomly chosen binary patterns, each with
thirty-two elements. The forgetting factor that was
used was 0.9 (= exp(—t./7),80 that an exposure time of
~71/10 was assumed, where r is the photorefractive
response time constant. Sequencing through the en-
tire set of patterns once is considered as one iteration
of the algorithm. A comparison simulation of the
original Perceptron algorithm is shown in Fig. 11(b)
[same conditions as those in Fig. 11(a)].

Hl. Multiple Category System

The extension of this concept to the multiple catego-
ry case, which requires a multiplicity of output lines as
opposed to a single output sufficient for dichotomies, is

SHUTTERS

PATTERN

Fig. 12. Multiple category pat-

\\ REFERENCE .
tern classifier.

PATTERN
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shown in Fig. 12, where the single detector and the
reference beam shutter have been replaced by a detec-
tor array/shutter combination and an SLM/shutter
combination, respectively. Here, the reference for
each pattern is no longer a single plane wave but a set of
plane waves dictated by the collection of openings in
the 1-D SLM. Initially, the crystal contains no holo-
grams and interconnections are built up by simply
exposing the hologram with light source 1 with the
pattern in the 2-D SLM and its associated reference
pattern in the 1-D SLM. The process is repeated for
each pattern in the training set. After the initializa-
tion, the first pattern is loaded into the 2-D SLM and
the reference beam shutter is closed to interrogate the
system. The reconstructed output pattern is then
compared against the desired output pattern to yield
the error vector. The algorithm must now be per-
formed in two steps; first, only those portions of the 1-
D SLM corresponding to the positive portions of the
error vector are opened and light source 1 is turned on
to strengthen certain interconnections following the
Perceptron recipe. Then, only those portions corre-
sponding to negative elements of the error vector are
loaded into the 1-D SLM and light source 2 is turned
on to weaken the appropriate weights. The buffer
needed to store the error result needed for this func-
tion is especially simple and can be integrated into the
detector array/amplifier assembly. The subtractive
capability allows for a more exact implementation of
the learning algorithms, even for the multiple category
case.

V. Summary

We have described a new implementation of a learn-
ing machine which implements the Perceptron algo-
rithm for pattern dichotomy. The optical system im-

‘l‘ Rockwell International

Science Center

plements the weight storage and update functions
using coherent means and, in particular, makes novel
use of the Stokes’ principle to achieve truly subtractive
as well as additive weight changes, precluding the need
for biases which are typically used in incoherent imple-
mentations as discussed earlier. The preliminary ex-
perimental results show that high quality subtractions
are possible and the computer simulations will be veri-
fied by actual optical system operation in future work.

This work is supported, in part, by the Office of
Naval Research contract N00014-88-C-0230.
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Two-Wave Mixing in Nonlinear Media

POCHI YEH, SENIOR MEMBER, IEEE

(Invited Paper)

Abstract—The coupling of two electromagnetic waves in various
menlinear media is treated. The nonlinear media considered include
photorefractive crystals, Kerr media, etc. The theory, some of the ex-
periments, and several applications are described.

I. INTRODUCTION

O-WAVE mixing (sometimes referred to as two-
beam coupling) is an exciting area of research in non-
linear optics. This area involves the use of nonlinear op-
tical media for the coupling of two electromagnetic waves,
especially the energy exchange between them.

Two-wave mixing is a physical process which takes ad-
vantage of the nonlinear response of some materials to the
illumination of electromagnetic radiation. For example,
let us consider the interference pattern formed by two laser
beams in a nonlinear medium. Such a pattern is charac-
terized by a spatial variation (usually periodic) of the in-
tensity. If the medium responds nonlinearly, then an in-
dex variation is induced in the medium. The process of
forming an index variation pattem inside a nonlinear me-
dium using two-beam interference is similar to that of
hologram formation. Such an index variation pattern is
often periodic and is called a volume grating. When the
two waves propagate through the grating induced by them,
they undergo Bragg scattering {1]. One beam scatters into
the other and vice versa. Such scatterings are reminiscent
of the read-out process in holography [2].

Energy exchange between two electromagnetic waves
in nonlinear media has been known for some time. Stim-
ulated Brillouin scattering (SBS) and stimulated Raman
scattering (SRS) are the best examples [3]). Both of these
processes require relatively high intensities for efficient
coupling. Recent interest in two-wave mixing arises from
the strong nonreciprocal energy exchange at relatively
lower intensities between two coherent laser beams in a
new class of materials called photorefractive crystals. In
addition, these materials are very efficient for the gener-
ation of phase-conjugated waves [4])-[6]. Materials such
as barium titanate (BaTiO,) and strontium barium niobate
(Sr,Ba, _,Nb,O¢, SBN) are by far the most efficient non-
linear media for the generation of phase-conjugate waves,

Manuscript received May 20, 1988; revised July 24, 1988. This work
was supported in part by the Office of Naval Research under Contracts
NOOO14-85-C-0219, NO0014-85-C-0557, NOOOi4-88-C-0230, and
NOO0O0)4-88-C-023).
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as well as the coupling of two laser beams using relatively
low light intensities (e.g., 1 W/cm?). Optical phase con-
jugation via four-wave mixing in nonlincar media also in-
volves the formation of a volume index grating. The main
difference between two-wave mixing and phase conjuga-
tion via four-wave mixing is that in four-wave mixing, a
third beam is used to read out the volume hologram,
whereas in two-wave mixing, the same beams read the
mutually-induced volume hologram. To satisfy the Bragg
condition, this third beam must be counterpropagating
relative to one of the two beams that are involved in the
formation of the volume hologram. In two-wave mixing,
the Bragg condition is automatically satisfied.

In this paper, we first describe briefly the physics of the
photorefractive effect. A coupled-mode theory is then de-
veloped to analyze the coupling of two coherent electro-
magnetic waves inside a photorefractive medium. Both
codirectional and contradirectional coupling are consid-
ered. The coupled-mode theory is then extended to con-
sider the case of nondegenerate two-wave mixing. This is
followed by a discussion of the fundamental limit of the
speed of photorefractive effect. The concept of an artifi-
cial photorefractive effect is then introduced. In the sec-
tion that follows, we consider the coupling of two polar-
ized beams inside photorefractive cubic crystals. The
formulation is focused on the cross-polarization two-beam
coupling in semiconductors such as GaAs. In Section IV,
we treat the coupling of two electromagnetic waves inside
a Kerr medium and discuss the electrostrictive Kerr effect.
A new concept of nonlincar Bragg scattering is intro-
duced. We also point out the similarity among various
kinds of two-wave mixing, including SBS and SRS. In the
last section, we discuss several applications of two-wave
mixing. These include photorefractive resonators, optical
nonreciprocity, resonator model of self-pumped phase
conjugators, real-time holography, and nonlinear optical
information processing.

II. PHOTOREFRACTIVE MATERIALS

The photorefractive effect is a phenomenon in which
the local index of refraction is changed by the spatial vari-
ation of the light intensity. Such an effect was first dis-
covered in 1966 [7}. The spatial index variation leads to
a distortion of the wavefront, and such an effect was re-
ferred to as *‘optical damage.’" The photorefractive effect
has since been observed in many electrooptic crystals, in-
cluding LiNbO,, BaTiO,, SBN, BSO, BGO, GaAs, InP,

0018-9197/89/0300-0484801.00 © 1989 IEEE
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etc. It is generally believed that the photorefractive effect
arises from optically-generated charge carriers which mi-
grate when the crystal is exposed to a spatially-varying
pattern of illumination with photons having sufficient en-
ergy. Migration of the charge carriers due to drift or dif-
fusion produces a space-charge separation, which then
gives rise to a strong space-charge field. Such a field in-
duces refractive index change via the Pockels effect. This
simple picture of the photorefractive effect explains sev-
eral interesting steady-state optical phenomena in these
media.

A. Kukhtarev-Vinetskii's Model

Although there are several models for the photorefrac-
tive effect [8]-[11], the Kukhtarev-Vinetskii model is the
most widely accepted one [8], [9]. In this model, the pho-
torefractive materials are assumed to contain donor and
acceptor traps. These traps which arise from the imper-
fections in the crystal, create intermediate electronic en-
ergy states in the bandgap of the insulators. When photons
with sufficient energy are present, electronic transitions
due to photoexcitations take place. As a result of the tran-
sitions, charge carriers are excited into the conduction
band and the ionized donors become empty trap sites. The
rate of carrier generation is (s/ + 8)(Np — Np ). whereas
the rate of trap capture is v NNp. Here, s is the cross
section of photoionization, § is the rate of thermal gen-
eration, v, is the carrier-ionized trap recombination rate,
and N and N stand for the concentration of the carriers
and ionized traps. Np is the density of the donor traps.

The space-charge field produced by the migration of the
charge carriers is determined by the following set of equa-
tions:

%N=%N5—;V J (1)

2 N3 = (s + B)(No = N3) = mNN5 (2)

j =euN(E—£}V|ogN\) +plZ (3)

V- (eE¥) = e(N,+ N = Nj) (4)

where  is the unit vector along the ¢ axis of the crystal,
I is the light intensity, N, is the acceptor concentration,
p is the mobility, T is temperature, k is the Boltzmann
constant, n is the index of refraction, ¢ is the dielectric
tensor, pl is the photovoltaic current, and p is the photo-
voltaic constant. E* stands for the space-charge field. E
is the total field which includes E* and any external or
internal fields (such as chemical or intemnal ferroelectric
fields).

As a result of the presence of the space-charge field, a
change in the index of refraction is induced via the linear
electrooptic effect [1] (Pockels effect):

1 -
A<p>q = FUAE:C

(5)
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where r;;, is the electrooptic coefficient (with i, j, k = x,
¥, 2).

B. Degenerate Two-Wave Mixing

We now consider the interaction of two laser beams in-
side a photorefractive medium (see Fig. 1). If the two
beams are of the same frequency, a stationary interference
pattern is formed. Let the electric field of the two waves
be written

E = aebh j=12 (6)

where A4, A, are the wave amplitudes, w is the angular
frequency, and k,, k, are the wave vectors. For simplic-
ity, we also assume that both beams are polarized perpen-
dicular to the plane of incidence (i.e., s-polarized).

Within a factor of proportionality. the intensity of the
electromagnetic radiation can be written

2 2
I1=|E|"=|E + 5. (7)
Using (6) for the electric field, the intensity can be written
= A + |4 + At %7 4+ 44287 (8)

where

E = kz - ; 1- (9)
The magnitude of the vector K is (27 /A ), where A is the
period of the fringe pattern. The intensity [(8)] represents
a spatial variation of optical energy inside the photore-
fractive medium. According to Kukhtarev's model, such
an intensity pattern will generate and redistribute photo-
carriers. As a result, a space-charge field is created in the
medium. This field induces a volume index grating via the
Pockels effect. In general, the index grating will have a
spatial phase shift relative to the interference pattern [8].
The index of refraction including the fundamental com-
ponent of the intensity-induced gratings can be written

AQ

n-—n+ L gl

2 (10)

lexp (-iK - 7) + c.c.

where

(11)

n, is the index of refraction when no light is present, ¢ is
real, and n, is a real and positive number. Here again, for
the sake of simplicity, we assume a scalar grating. The
phase ¢ indicates the degree to which the index grating is
shifted spatially with respect to the light interference pat-
tem. In photorefractive media that operate by diffusion
only (i.e., no extemal static field), e.g.. BaTiO;, the
magnitude of ¢ is x/2_with its sign depending on the
direction of the ¢ axis. K is the grating wave vector and
1, is the sum of the intensities. The parameter n, depends
on the grating spacing and its direction, as well as on the
material properties of the crystal, e.g., the electrooptic
coefficient. Expressions for n,e'® can be found in [9) and
{10].

L=L+5L = Vllz + l"zlz-
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Fig. ). (a) Schematic drawing of codirectional two-wave mixing. (b)
Schematic drawing of contradirectional two-wave mixing.

The finite spatial phase shift between the interference
pattern and the induced volume index grating has been
known for some time [8). [12]. The presence of such a
phase shift allows for the possibility of nonreciprocal
steady-state transfer of energy between the beams [9].
[13]-[15]. To investigate the coupling. we substitute (10)
for the index of refraction and E = E, + E, for the elec-
tric field into the following wave equation:

V2E+%n2E=0 (12)
where c is the velocity of light.

We assume that both waves propagate in the xz plane.
Generally speaking. if the beams are of finite extent (i.e.,
comparable to the intersection of the beams). the ampli-
tudes may depend on both x and z. Here we assume, for
the sake of simplicity, that the transverse dimension of
the beams is of infinite extent so that the boundary con-
dition requires that the wave amplitudes A, and A4, be
functions of z only (see Fig. 1). We will solve for the
steady states so that A, and A, are also taken to be time-
independent. )

Using the slowly-varying approximation, i.e.,

2
d‘d:‘i A,l <<

d .
6J¢T:AJ j=1.2

we obtain

wznon'
———

e AT A, A
c’l, ERC

o d
2'6[ d—zAl

2

w'n,n,

—5— e"Al A A,
c’l,

it

. d
2i; 7 42 (13)

where 8, and 8, are the z components of the wave vectors

k, and I-:', inside the medium, respectively. The energy
coupling depends on the relative sign of 8, and 8,. Thus,
two-wave mixing is divided into the following two cate-
gories.

1) Codirectional Two-Wave Mixing (8,8. > 0):
Referring to Fig. 1(a). we consider the case when the two
laser beams enter the medium from the same side at 2
0. Without loss of generality, we assume that

By =B; =kcos(6/2) = g)‘lno cos (8/2) (14)

7
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where 8 is the angle between the beam inside the medium,
and n, is the index of refraction of the medium.

Substituting (14) for 8; and 8- in (13), and using («/c)
= 2x /A, we obtain

9= i 4, [a, - 24

d:"" M, cos (6/2) SR

d xn, 2 a

— Ay = —f————— N - —

2’2" ', cos(6/2) ¢ A4 =34 (19)

where we have added terms that account for the attenua-
tion and a is the bulk absorption coefficient.
We now write

A \/1_1 exp ( -i%)
As = VL exp (=iys) (16)

where ¥, and ¥ are phases of the complex amplitudes A4,
and A,, respectively. Using (16) and (11), the coupled
equation (15) can be written as

d L1

zh =L e
d. L
p L= 'yll s al (17)
and
d I,
d: Vi =8 I + I
d I,
where
21’1| .
Y= Ncos(62)""° (19)
B8 U cos ¢ (20)

= N cos (6/2)
The solutions for the intensities /,(z) and /,(2) are [16)

1 +m™!

I(z) = 1(0) ;=i e™ (21)
l +m -al
I(z) = b(0) ;=== e (22)
where m is the input intensity ratio
1,(0) ,
m= 740)’ (23)

Note that in the absence of absorption (a = 0), I,(2) is
an increasing function of z and /,(2) is a decreasing func-
tion of z, provided v is positive. The sign of y depends
on the direction of the ¢ axis. As the result of the coupling
for y > 0in Fig. 1, beam 2 gains energy from beam 1.
If this two-wave mixing gain is large erough to overcorhe
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the absorption loss, then beam 2 is amplified. Such an
amplification is responsible for the fanning and stimulated
scatterings of laser beams in photorefractive crystals [17].
With 7,(2). I,(z) known. the phases ¥, and ¥. can be
obtained by a direct integration of (18). Substituting (21)
and (22) into (18) for /, and I, respectively, we obtain

va(z) = ¥2(0) = S B dz

ol + m e

(24)

Note that this photorefractive phase shift is independent
of the absorption coefficient . Carrying out the integra-
tion in (24), we obtain

1+m

g8
¥a(z) — ¥a0) = Y In <-1—+-’?-;‘> (25)

From (18). we note that

S =8 (26)

Thus, ¥,(z) can be written

¥i(z) = ¥i(0) = Bz — [J’z\’l) - ¢z(0)]

1
fln (::eﬁ) (27)

If we refer to A. as the signal beam, then a useful param-
eter is the gain

_h(L)y i+ m e
T L(0) 1+ met

where we recall that m is the intensity ratio at input face
(z = 0). Fig. 2 plots the gain as a function of the length
of interaction L for various values of m.

2) Contradirectional Two-Wave Mixing: We now con-
sider the case when the two beams enter the medium from
opposite faces, as shown in Fig. 1(b). In codirectional
two-wave mixing. the sum of the beam power is a con-
stant of integration provided the medium is lossless,
whereas in contradirectional two-wave mixing, the differ-
ence of the beam power (i.e., net Poynting power flow)
is a constant. In addition, the coupled-mode equation
which governs the wave amplitudes is also different from
that of codirectional coupling. This leads to qualitative
differences in the energy exchange between the two waves
in two cases.

Let

B, = —B, =kcos(6/2) = 2_%'"0 cos (8/2) (29)

~al

(28)

where 8 /2 is the angle between each of the beams and the
z axis. Substitution of (29) for 8, and 8; in (13) yields a
similar set of coupled equations. Using (16). such a set
of coupled equations becomes

d, __ hh o

AL AU M

d Ll

d:lz— 7 +I:+0/: (30)
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Fig. 2. Gain versus L for various values of m.
and
d v 8 I
— Y, =
d: L+ 1
d 1,
=~y = -8 : 31
dz I + 1, (31)

where 8 and v are phase and intensity coupling constants
and are given by

2xn,

Y Neos(6/2) "¢

B =

— T s
A cos (6/2) '

Comparing with (17) and (18), we notice the sign differ-
ence in these equations for beam 2.

The solutions for (30) and (31) can be obtained in closed
form for the case when o = 0 (i.e., lossless). In the loss-
less case, we note that the Poynting power flow along +2z
is conserved, i.e.,

d-‘i:(l. -hL)=0 (32)
and the solution of (30) witha = O is [18]
I(z) = =C + JC* + Bexp(-v2)
I(z) = C + JC* + Bexp (-v2) (33)

where B and C are constants and are related to the bound-
ary condition. B and C can be expressed in terms of any
two of the four boundary values /,(0), /5(0), /(L) and
I, (L), where L is the length of interaction. In terms of
1,(0) and 1,(0), B and C are given by

B = 1,(0) 1(0)
C = [1(0) - 1,(0)]/2. (34)

In practice, it is convenient to express B and C in terms
of the incident intensities /;(0) and /,(L). In this case, B
and C become

1(0) + I(L)
I(L) + 1,(0) exp (—7L)

I3(L) - I13(0) exp (—vL)
IL(L) + 1(0)exp (—9L)

B = 1,(0) I(L)

1
C= 3 (35)
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According to (30), both /,(2) and I,(z) are increasing
functions of z, provided v is negative. The transmittance
for both waves, according to (34) and (35), are

_ l|(L) _ 1+m”
"EN0) T T m exp (A1)

P 12(0) _ 1+m
27 (LY 1+ mexp(—vL)

(36)

where m is the incident intensity ratio m= [,(0)/l,(L).
Note that 7, < 1 and 1; > 1 for positive v. The sign of v
depends on the direction of the ¢ axis. It is interesting to
note that these expressions for transmittance are formally
identical to those of the codirectional coupling, even
though the spatial variations of /,(z) and I,(z) with re-
spect to z are very different. Note that 7, and 1, are related
by 1; = 1, exp (yL).

The relative phase of the two waves is obtained by solv-
ing (30) in cooperation with (33), and is given by

V2 — ¥ = —}Bz + constant (37)

where f is the phase coupling constant. The relative phase
varies linearly with 2z, and thus leads to a change in the
grating wave vector by 8/2 along the z direction (i.e.,
the grating wave vector becomes K - §6%).

The nonreciprocal transmittance of photorefractive me-
dia may have important applications in many optical sys-
tems. It is known that in linear optical media, the trans-
mittance of a layered structure (including absorbing
material) is independent of the side of incidence (the so-
called left and right incidence theorem). Right now, with
the photorefractive material available, it is possible to
make a ‘‘one-way'® window which favors transmission
from one side only. These applications will be addressed
later in Section V-C.

The solutions of (33) did not take into account the effect
of the bulk absorption of light. The attenuation due to
finite absorption coefficient is reflected by the —a/, term
on the right-hand side of the first equation in (30), and the
+al, term on the RHS of the other equation. With these
two additional terms accounting for bulk absorption,
closed-form solutions are not available [19). However,
(30) can still be integrated numerically. It is found that a
very good approximate solution is

I7(2) = 17°°(2) exp (~az)
15(2) = 157°(z) exp [a(z - L)]. (38)

The approximation is legitimate provided a << |v|.
Fig. 3 illustrates the intensity variation with respect to
z for the case wheny = —10"'em, @ = 1.6 cm™', and
L = 2.5 mm. If the loss were neglected (i.e., a = 0),
the transmittance would be r; = 1.81 and 1, = 0.15. With
a = 1.6 cm™'. the transmittances become 7, = 1.27 and
1; = 0.1, according to a numerical integration. The ap-
proximate solution [(38)} would lead to 1, = 1.21 and 1,

RELATIVE INTENSITY

-— - - faesl
wor | === A_-_‘/‘

12000 | _ oo

Fig. 3. Intensity variation with respect to 2 in photorefractive crystals. The
coupling constant is taken as y = — 10 cm ' and interaction length L 1s
2.5 mm. The dashed curves are for the lossless case t1.e.. a = 0). The
solid curves are obtained by numerical integration including the loss ta
= 1.6 cm™"'). The dotted curves are the approximate solution (38).

= 0.10. Note that even with the presence of absorption,
the transmittance can still be greater than unity.
By using the approximation solution {(38)], the trans-
mittances become
1+m™!

L exp (yL) exp {(—al)

1+m
1= T mexp (—aL) exp (—al). (39)

There are two extreme cases worth mentioning. In the
case when I,(L) >> 1,(0), m << 1, the transmittances
become 1, = exp [(-y — a)l)and 1, = exp (—al),
whereas in the case when /,(0) >> Ii(L). m >> |, the
transmittances are t;, = exp ( ~al)and 1, = exp [(y -
a)ll.

C. Nondegeneraie Two-Wave Mixing

When the frequencies of the two laser beams are differ-
ent, the interference fringe pattemn is no longer stationary.
A volume index grating can still be induced provided the
fringe pattern does not move too fast. The amplitude of
the index modulation decreases as the speed of the fringe
pattern increases. This is related to the finite time needed
for the formation of index grating in the photorefractive
medium. In the next section, we will consider the funda-
mental limit of the speed of photorefractive effect.

Let w; and w, be the frequency of the two beams. The
electric field of these two beams can be written

E =Aew -0 j=12 (40)
where k , and k 5 are the wave vectors and A4,. A, are the
wave amplitudes. The intensity of the electromagnetic ra-
diation, similar to that given by (8). can be written
] = |A|’2 + “2'2 +'A,"Aze'm"i'?) + A'Azte-i(m-rﬁ

(41)
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where

(42)

Such an intensity distribution represents a traveling fringe
pattern at a speed of

a_m

K 2x

where A is the period of the fringe pattern.

The index of refraction including the fundamental com-
ponent of the intensity-induced grating can be written

v = (43)

»
n=n,+ % {e"’ A;A: exp [i(x — K- F)] + c.c.}

(44)

where
In = l| + lz = lA|I- + - (45)

¢ is real and n, is a real and positive number. Here again,
for the sake of simplicity. we assume a scalar grating. The
phase ¢ indicates the degree to which the index grating is
shifted spatially with respect to the light interference pat-
tern. According to [20). ¢ and n, can be written, respec-
tively, as

A

¢ = ¢, — tan”' (Qr) (46)
and
n = 21 5. 1,/2 ng (47)
(1 + Q)

where 7 is the decay time constant of the holograph grat-
ing, An, is the saturation value of the photoinduced index
change, and ¢, is a constant phase shift related to the non-
local response of the crystal under fringe illumination.
Both parameters An, and ¢, depend on the grating spacing
(2= /K ) and its direction, as well as on the material prop-
erties of the crystal, e.g., the electrooptic coefficients.
Expressions for An, and ¢, can be found in [9] and [10].
In photorefractive media, e.g., BaTiO,, that operate by
diffusion only (i.e., no external static field), the magni-
tude of ¢, is x /2 with its sign depending on the orienta-
tion of the ¢ axis (note that these crystals are acentric).

Following the procedure similar to the one used in the
previous section, coupled equations for the intensities
1,(2), 1(z) and the phases ¥,(z), ¥i(a) are obtained.
They are formally identical to those of the degenerate
case, i.e.. (17) and (18) for codirectional coupling and
(30) and (31) for contradirectional coupling. The intensity
coupling constant i, however, is now a function of the
frequency detuning 2.

For crystals such as BaTiO, that operate by diffusion
only, the coupling constant can be written. according to
(19). (46). and (47). as

y = v./[1 + (ar)] (48)
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where v, is the coupling constant for the case of degen-
erate two-wave mixing (i.e., @ = w;, — wy, = C) and is
given by

47An
= — 4
Yo = Ncos 6 (49)
In deriving (48), we have used /2 for ¢, in (46).
The two-wave mixing gain can be written
+
lz(L) - l m -al (50)

LO) 1T+met’

where we recall that m is the input beam ratio m =
1,(0)/1,(0) and L is the length of interaction.

Fig. 4 shows the signal gain [(50)] as a function of the
frequency detuning Q7 for various values of m. We note
that for the case of pure diffusion, signal gain decreases
as 27 increases. This is true for both codirectional and
contradirectional coupling. When {17 >> |, the intensity
coupling constant iy decreases significantly. The time con-
stant 7 depends on materials as well as on the intensity of
the laser beams. The fundamental limit of such a time
constant 7 is discussed next.

D. Speed of Photorefractive Effect—Grating Formation
Time

As mentioned earlier, photorefractive crystals such as
BaTiO;, Sr,Ba,_,Nb,O¢ (SBN), Bi,;SiO,, (BSO), etc.,
are by far the most efficient media for the generation of
phase-conjugated optical waves using relatively low light
intensities (1-10 W/cmz). In addition, these materials
also exhibit several interesting and important phenomena
such as self-pumped phase conjugation, two-beam energy
coupling, and real-time holography. All of these phenom-
ena depend on the formation of volume index gratings in-
side the crystals [8], {9].

One of the most important issues involved in device
applications is the speed of the grating formation (or the
time constant 7). Such a speed of the light-induced index
gratings has been investigated theoretically using Kukh-
tarev’'s model and others, as well as experimentally in
various crystals [8]-[10], {21]. The issue of fundamental
limit of the speed of photorefractive effect has been a sub-
ject of great interest recently. Using Kukhtarev's model,
let us examine the four fundamental processes involved
in the photorefractive effect in sequence: 1) photoexcita-
tion of carriers, 2) transport. 3) trap, and 4) Pockels ef-
fect. The photorefractive effect is a macroscopic phenom-
enon and requires the generation and transport of a large
number of charge carriers. We note that without the pres-
ence of charge carriers, photorefractive gratings can never
be formed, and no matter how fast the carriers can move
(even at the speed of light, 3 x 10° m/s), the formation
of index grating is still limited by the rate of carrier gen-
eration. Therefore, although each of the four processes
involved imposes a theoretical limit on the response time
of photorefractive effect, the fundamental limit of the
speed of photorefractive effect is determined by the pho-
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104 P T —r T stant v and is inversely proportional to the light intensity.
SN oo Equation (51) is the expression for the minimum time re-
(AL quired for the formation of an index grating which pro-
AL P . vides a coupling constant 4.
| ) A figure-of-merit for photorefractive material is often
R defined as

102} 1
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fNr

Fig. 4. Signal gain g as a function of {7 for various values of m.

toexcitation of carriers and not by the carrier transport. In
other words, the charge carriers must be generated before
they can be transported. Any finite time involved in the
transport process can only lengthen the formation time of
the grating. From this point of view, the fundamental limit
may also be called the photon-flux limit, or simply the
photoexcitation limit. Although the fundamental limit can
be derived from (1)-(4) of Kukhtarev’s inodel, it has been
recently derived using a relatively simple method [22].
Such a fundamental limit has been confirmed experimen-
tally (23]. In the limit when the crystal is illuminated with
infinite intensity, the speed of the photorefractive effect
will be limited by the charge transport process [24].

Assuming that the separation of a pair of charge parti-
cles requires the absorption of at least one photon, we can
calculate the energy required to form a given volume in-
dex grating. To illustrate this, let us consider the photo-
refractive effect in BaTiO;. Generally speaking [10]. an
efficient beam coupling would mq}uire a charge carrier
density of approximately 10'® cm ™. Such a charge sep-
aration would require the absorption of at least 10'® pho-
tons in a volume of 1 cm®. Using a light intensity of 1 W
in the visible spectrum, the photon flux would be approx-
imately 10'%/s. Thus, assuming a quantum efficiency of
100 percent, it takes at least 1 ms just to deposit enough
photons to create the charge separation. The actual grat-
ing formation time can be much longer because not all of
the charge carriers are trapped at the appropriate sites.

According to the model described in [22], the minimum
time needed for the formation of an index grating, which
provides a coupling constant of v, is given by

,-<'2>(b) 12 e

“\e/\A a,/ % nr
where Ay is the photon energy. e is electronic charge, A
is wavelength of light, A is the grating period. a, is pho-
torefractive absorption coefficient, 5 is the quantum effi-
ciency, ¢ is dielectric constant. r is the relevent electroop-

tic coefficient, and / is the intensity of light. Note that the
time constant is directly proportional to the coupling con-

(51)

3
nr
Q=—. (52)
€
Table I lists such parameters for some photorefractive ma-
terials. Using such a parameter, the photon-limited time
for the index grating formation becomes

-(BRE)

‘ e/\A/\a,) mlQ

Here. we note that this photon-limited time is inversely

proportional to the material’s figure-of-merit and is pro-
portional to the coupling constant .

We now discuss this photon-limited time for the for-
mation of an index grating which yields a coupling con-
stant of 1 cm™'. For materials such as BaTiO,. SBN,
BSO, and GaAs, the figure-of-merit Q is of the order of
1 (see Table I) in MKS units (M°/FV). In many of the
experiments reported recently, hv is approximately 2 eV,
(A/A) is of the order of 0.1. We further assume that the
photoexcitation absorption coefficient is 0.1 cm ™' and that
the quantum efficiency 5 is 100 percent. Using these pa-
rameters and a light intensity of 1 W/cm”, (53) yields a
photon-limited time constant of 0.15 ms. This is the min-
imum time required for the formation of an index grating
which can provide a two-wave mixing coupling constant
of 1 ecm™'. By virtue of its photoexcitation nature, the
photorefractive effect is relatively slow at low intensities
because of the finite time required to absorb the photons.
Table II shows the comparison between the measured time
constants with the calculated minimum time from (53).
The only way to speed up the photorefractive process 1s
by using higher intensities. Fig. 5 plots this minimum time
constant for BaTiO; (or GaAs) as a function of intensity.

The photoexcitation process imposes a fundamental
limit on the speed of photorefractive effect at a given
power level. The time constant given by (51) here is the
absolute minimum time required to generate a volume
grating of given index modulation. We assume that the
transport is instantaneous and the quantum efficiency is
unity. Thus the derived time constant is the absolute min-
imum time. Any finite time involved in the transport pro-
cess can only slow down the photorefractive process.

The fundamental limit discussed here can also provide
imponrtant guidelines for many workers in the area of ma-
terial research. For example, if we compare it with the
experimental results. we find that the time constant of
some materials (e.g., BaTiO,. SBN) is two orders of
magnitude larger than the fundamental limit. Thus. the
calculation of such a fundamental limit and a simple com-
parison point out the room for improvement by either in-
creasing the photorefractive absorption or the quantum ef-

(53)
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TABLE ]
FIGURE-OF-MERIT FOR SOME PHOTOREFRACTIVE MATERIALS {22)
A r o
Matenals um pm/V n ¢/e, pm/ Ve, Q(MKS)
BaTiO, 0.5 7. = 1640 n =24 €, = 3600 6.3 0N
SBN 0.5 ry, = 1340 n =23 & = 3400 4.8 0.54
GaAs 1.1 ry = 1.43 n, =34 €= 123 4.7 0.53
BSO 0.6 ra=35 n =254 ‘e = 56 1.5 0.17
LiNbO, 0.6 ry; = 31 n =22 € = 32 10.3 1.16
LiTaO, 0.6 r3 = 3] n, =22 € = 45 7.3 0.83
KNbO, 0.6 rey = 380 n=23 € = 240 19.3 22
*The figure-of-merit Q depends on the configuration of interaction.
TABLE 11
CoMPARISON OF MEASURED TIME CONSTANTS 7 AND THE FUNDAMENTAL LiMiT £
A A a, ¥ r ™

Materials um um cm! cm™! s s Remarks
GaAs 1.06 1.0 1.2 04 80 x 10°° 45 x 10°° 25)
GaAs:Cr’ 1.06 1.1 4.0 0.6 53 x 107" 3 x 107" 26)
BaTiO, 0.51S 1.3 1.0 20.0 1.3 2x10° Qn
BSO 0.568 23.0 0.13 10.0 15 x 107 2x10°" (28)
SBN 0.515 1.5 0.1 0.6 2.5 6 x 10" 29
SBN: Ce 0.515 1.5 0.7 14.0 0.8 2x10°° 29)

*r and 1 are time constants at incident intensity of 1| W /em?

% is the calculated time constant by using (53) and assuming a quantum efficiency of 1.

100 T T
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Fig. S. Fundamental limit of the speed of photorefractive effect of BaTiO,
(or GaAs) with coupling constant of { cm ™’

ficiency. There are some materials (e.g., GaAs) whose
photorefractive response is close to the fundamental limit,
leaving no more room for further improvement by any
means (e.g., heat treatment, doping, or reduction.) Re-
cently, highly-reduced crystals of KNbO, were prepared
which exhibit a photorefractive response time very close
to the fundamental limit [23].

In summary, the photorefractive effect is a macroscopic
phenomenon. It involves the transport of a large number
of charge carriers for the formation of any finite grating.
The fundamental limit is the minimum time needed for
the generation of these carriers. The speed is fundamen-
tally limited by the finite time needed to absorb a large

number of photons at a given power level. By counting
the total number of photons needed for the formation of
an index grating, the photon-limited time constant is de-
rived. This time constant is inversely proportional to the
light intensity. We further estimated this minimum time
constant for some typical photorefractive crystals. Such a
fundamental limit provides important guidelines for re-
searchers in the areas of device application and material
research.

IIl. PHOTOREFRACTIVE Two-WaveE Mixing IN Cusic
CRYSTALS

Photorefractive two-beam coupling in electrooptic
crystals has been studied extensively for its potential in
many applications. Much attention has been focused on
materials such as BaTiO,;, BSO. SBN, eic., because of
their large coupling constants (see, for example, Table
II). Although these oxide materials are very efficient for
two-beam coupling, they are very slow in response at low
operating powers [22]. Recently, several experimental in-
vestigations have been carried out to study two-wave mix-
ing in cubic crystals such as GaAs, which responds much
faster than any of the previously mentioned oxides at the
same operating power [25]. [26].

In addition to the faster temporal response, the optical
isotropy and the tensor nature of the electrooptic coeffi-
cients of cubic crystals allow for the possibility of cross-
polarization coupling. Such cross-polarization two-wave
mixing is not possible in BaTiO, and SBN because of the
optical anisotropy, which leads to velocity mismatch. The
velocity mismatch also exists in BSO crystals because of
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the circular birefringence. A number of special cases of
two-wave mixing have been analyzed. Recently, a gen-
eral theory of photorefractive two-wave mixing in cubic
crystals was developed [30]. Such a theory predicts the
existence of cross-polarization signal beam amplification.
These cross-polarization couplings have been observed in
GaAs crystals [31]-[33]. In what follows, we describe the
coupled-mode theory of photorefractive two-wave mixing
in cubic crystals, especially those with point group sym-
metry of 43m. The theory shows that cross-polarization
two-wave mixing is possible in cubic crystals such as
GaAs. Exact solutions of coupled mode equations are ob-
tained for the case of codirectional coupling.

A. Coupled-Mode Theory

Referring to Fig. 6, we consider the intersection of two
polarized beams inside a cubic photorefractive crystal.
Since the crystal is optically isotropic, the electric field of
the two beams can be written as

E=(54,+ pA,) exp (=ik, - F)
+ (5B, + p1B,) exp (=ik, - F) (54)

where k ) and ;2 are wave vectors of the beams, § is a
unit vector perpendicular to the plane of incidence, and
P1. P, are unit vectors parallel to the plane of incidence
and perpendicular to the beam wave vectors, respectively.
Since each beam has two polarization components, there
are four waves involved and A, A,, B,, and B, are am-
plitudes of the waves. All of the waves are assumed to
have the same frequency. In addition, we assume that the
crystal does not exhibit optical rotation.

In the photorefractive crystal (from z = Ot0 z = L),
these two beams generate an interference pattern,

E*E=4'A,+ A4, +B'B, + BB,
+ [(A,B} + A,B} P, - p2)
- exp (iK - F) + c.c.] (55)

where K = E; - ic', is the grating wave vector, and c.c.
represents the complex conjugate. We note that there are
two contributions to the sinusoidal variation of the inten-
sity pattern. As a result of the photorefractive effect, a
space-charge field E* is formed which induces a volume
index grating via the Pockels effect,

(8¢), = —eon'ry E, (56)

where ¢ is the dielectric permittivity of vacuum, n is the
index of refraction of the crystal. r,; is the electrooptic
coefficient, and E, is the k component (k = x, y, 2) of the
space-charge field. The fundamental component of the in-
duced grating can be written

Ac = —¢e,[(A,B} + A,B) cos )

cexp (iK-F+¢)+ ce.])/1, (57)
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Fig. 6. Schematic drawing of photorefractive two-beam coupling in cubic
crystals.

where ¢, is a 3 X 3 tensor, ¢ is the spatial phase shift
between the index grating and the intensity pattern, 8 is
the angle between the beams inside the crystal, and /, is
given by

I,=A'A, + AJA, + BB, + B} B, (58)

For cubic crystals with point group symmetry of 43m,
€, is given by

0 E E
€§G = n‘r‘| E: 0 EX (59)
E E 0

where Tay = I'pyp = Iy = ry, and Ex. E\- and E: are the
three components of the amplitude of the space-charge
field.

Substitution of the index grating equation (56) into
Maxwell’s wave equation leads to the following set of
coupled equations:

d i
22 A = 2_61 eolrssBs + r:p:Bp]

- (A,B} + A,B} cos 8)/1,

d I i
d: Bs = 232 4 [r.uA: + r:;n"p]

“(A'B, + A; B, cos 0)/1,
d i,
d_ZAﬂ = 2—61' e°[Fp,,B, + l",,,p:
* (A,B + A,B, cos 8)/I,

B,)

5; P = 2;52 e-iolrpu"s + I‘PH"AP]
“(A'B, + A} B, cos 8)/1, (60)
where
T = wuepe, (61)
and
r,=(ilT}j) ij=3p5.5: (62)

and 8, 8, are the z components of the wave vectors.

As indicated by the subscripts, I',’s are the coupling
constants between the ith and jth polarized waves. Thus,
I',, and ', . are the parallel coupling constants, and I'
I'y,. are the cross-coupling constants.

spr
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A similar set of equations had been derived by previous
workers and exact solutions were obtained for the case of
codirectional parallel coupling [34]. Here we focus our
atiention on the case of cross-polarization coupling. In
cross-polarization coupling, the s component of beam 1 is
coupled with the p component of beam 2, and the p com-
ponent of beam 1 is coupled with the s component of beam
2.

B. Codirectional Cross Coupling

To illustrate the use of the coupled equation (60). in the
case of codirectional cross coupling. we consider a spe-
cial case in which the crystal orientation does not allow
the parallel coupling to occur. Such a two-beam coupling
configuration is shown in Fig. 7(a). The two beams enter
the crystal in such a way that the grating wave vector is
along the [110] direction of the crystal. In this configu-
ration, the unit vector § is parallel to {001} and the unit
vectors p,, p, are perpendicular to [001]. The amplitude
of the induced index grating ¢, can thus be written, ac-
cording to (59),

001
LI
6 =—=n'ryl 0 0 1 )E™ (63)
I AL
110

where E* is the amplitude of the space-charge field.
According to (63) and (62), and after a few steps of
algebra, the coupling constants can be written

Iy =Tpp. =0 (64)
Py =Ty = rsp: =T, = (27"/)‘)2""415“ cos (6/2)
(65)

where we assume that the beams enter the crystal sym-
metrically such that

B) = B, = (27 /N)ncos (6/2). (66)

We now substitute (65) and (66) into the coupled equa-
tion (60). This leads to

%A, = —yB,(A,B} + A,B] cos 8)/I,
z5= YA,(A B, + Ay B, cos 8)/1,

d * *

2. = —yB,(A,B + A,B; cos 0)/1,

dp - > *B 8)/1 67
Z Bp = YA, (A B, + Ap B, cos )/ (67)

where we have taken ¢ = = /2, and v is real and is given
by
vy = {(2#/)\)"37‘,5“. (68)

We notice from the coupled equation (67) that there are
two contributions to the holographic index grating. The
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Fig. 7. (a) A configuration for codirectional cross polarization coupling in
a cubic crystal of point group symmetry 43m. (b) a configuration for
contradirectional cross polarization coupling in the same class of crys-
tals.

relative phase of these two contributions is very important
because it determines whether these two parts enhance or
destroy the index grating. Such a relative phase is deter-
mined by the relative phases of the four amplitudes. Thus,
the energy exchange among the four waves depends on
the input polarization states.

We now derive the solutions of these coupled equa-
tions. According to (67), the total intensity I, is a constant
(i.e., independent of z). Thus, it is convenient to nor-
malize the beam amplitudes such that I, = 1. Here, re-
member that we neglect the material absorption in the
coupled equation. We will obtain the closed form solu-
tions of these coupled equations for the case of no ab-
sorption. In the case when the material absorption cannot
be neglected, the solutions are obtained by simply multi-
plying an exponential factor accounting for the absorp-
tion. This is legitimate provided that all four waves have
the same attenuation coefficient.

To obtain the solutions of the coupled equation (67), it
is useful to employ some of the constants of integration
which are given by

AA} + BB = ¢, (69)
A,A? + BB’ =, (70)
AAY + B'B, = (M)

AB, - A4,B, = c.. (12)

Using a change of variable similar to that used in [34] and
(35]. the coupled equations can be written

%g = —y(gic,cos 8 + go* - ¢;) (73)
d 2
-d—:f=-y(fc,cos0+fa—c2) (714)
where
f=A/A. g=B8,/B, (75)
¢ =c3— ¢} cosb. (76)

Equations (73) and (74) can be integrated. and the re-
sults are

f=A,/A =[~0+ qanh (—qyz/2 + )}/
(2¢ cos 6)
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g =B,/B,=[-0" + q" anh (¢*yz/2 + C")}/
(2¢, cos 6) (77)
with
(78)

where C and C' are constants of integration which are
determined by the boundary condition at z = Q.

Once fand g are known, the intensity of all four waves
is given by

g* =4cic; + ¢6°

l l2 - ‘f‘zcl - ‘fg’|2cl
? 1 - sl
I8, = |glc; = | fol'e
g 1~ | sl
|A,,|2 ¢ - [glzc»
A, 2 = = 2
' ] |f|2 1 — ‘fng
2 |B,,|2 C - 'f‘zt‘n
= = - 7
2 lel" 11—l ")

We now consider a special case of particular interest in
which the cubic crystal is sandwiched between a pair of
cross polarizers. Such a configuration is useful to elimi-
nate unwanted background radiation which often causes
noises in the detection of signals. The boundary condi-
tions in this case may be taken as

4,(0) = B,(0) = 0. (80)

Using (71) and (75)-(78), we have f(0) = g(0) = 0, ¢
= (0, and ¢ = 0, and the solutions become

_gtanh (¢v2/2)
2¢c, cos 8

_ qtanh (gv2/2)
2c¢; cos 8

f=

(81)

where ¢ = 2V¢¢;.
Taking 6 = 0, and using (79), the intensity of the four
waves becomes

'2 ]

A" = 1 + tanh’ (qyz/2)
2 tanh? (¢y2/2)
41" = e 1 + tanh? (qy2/2)
2 _ 1
B, = & T v/ )
IB,,IZ = tanh” (gvyz/2) (82)

T+ tanh” (qy2/2)

where ¢, = [A4,(0)]°, ¢, = | B,(0)|*. Fig. 8(a) shows the
variation of these intensities as functions of position for
the case of ¢, /¢, = 0.1. We note that for strong coupling
(yL >> 1), one-half of the incident pump energy A,(0)

1 T

10

10

12

(b)

Fig. 8. Intensity of the four waves are plotted as functions of distance for
various interaction situations. (a) Both incident beams are s-polarized
(i.e.. (A, (0) = B,(0) = 0.c;/c, = 0.1). (b) The pump beam is lin-
early polarized at an szimuth angle of 30° relative to the s direction. and
the signal beam is s-polarized. c; /¢, = 0.01.

is coupled to the p component of the signal beam B, and
one-half of the incident signal energy B, (0) is coupled to
the p component of the pump beam. As a result of the
opposite signs in the wave amplitudes ( f < 0), the two
contributions to the index grating tend to cancel each
other. Thus, when the energy of the p components reaches
one half of the incident energies, the coupling ceases.

It is possible that the p component of the signal beam
B, receives most of the incident pump energy A,. Fig.
8(b) illustrates a case in which the pump beam has both s
and p components, whereas the signal beam is s-polar-
ized. We note that for strong coupling (yL >> 1), most
of the energy of the s component of the pump beam is
coupled to the p component of the signal beam. The non-
reciprocal transfer of energy is very similar to that of con-
ventional two-wave mixing.




SC5544.FR

YEH TWO-WAVE MIXING IN NONLINEAR MEDIA

The exact solutions of (77) and (79) are useful when
the coupling is strong (yL >> 1) and the energy ex-
change is significant. For the case of weak coupling (yL
<< 1), or very little pump depletion, we may assume that
the pump beam amplitudes (A4,, 4,) remain virtually un-
changed throughout the interaction. Under these condi-
tions, the coupled equations become

%B, = vyaB, + vbB,
dp - dB (83)
2; Bp = 'ych + yab,

where a, b, ¢, and d are dimensionless constants and are
given by

a= |A,,[2 cos 8/1,

b= 4,41/,
c = AA; cos /1,
d=|a,'/1, (84)

We note that the magnitude of all four of these constants
is less than unity.

The coupled equation (83) can be easily integrated and
the results are

B,(2) = {[bB,(0) + aB,(0)] exp [(b + c)v2]
+ [¢B,(0) = aB,(0)]}/(b + ¢)
B,(z) = {c[bB,(O) + aB,(0)] exp [(b + ¢)7v2]
- b[cB,(0) - aB,(0)]}/la(b + c)]  (85)

where B,(0) and B,(0) are the amplitudes of the signal
beams at z = 0.
If we set B,(0) = 0 in (85), we obtain

B,(z) = B,(0)[be®* 7 + ¢]/(b + ¢)
B,(z) = B,(0)bc|e®* " ~ 1]/[a(b + c)]. (86)

If we assume further that yz << 1, (86) can be written
approximately as

*
p/ls
5, ¢

B,(z) = B,(0) + B,(0)

|4,

Bp(z) = BJ(O) _l— YZ. (87)
We note that the amplitude of B, may increase or decrease
depending on the polarization state of the pump beam A,
whereas the amplitude B, is an increasing function of vyz.

In the above derivation, a spatial phase shift between
the index grating and the intensity pattern was assumed to
be exactly x/2, which corresponds to the case of pure
diffusion (i.e., no externally-applied static electric field).
In the event when the spatial phase shift is not x /2, (69)-
(72) are still valid and exact solutions are still available.
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They are given by
f=A4,/A, = [-0 + g anh (ieqyz/2 + C)]/
(2¢, cos 6) (88)
g = B,/B, = [—o* + q* tanh (ie*¢*y2/2 + C')]/
(2¢; cos 8) (89)
where e is an exponential factor given by
e = exp (id). (90)

We note that the solutions are formally identical to the
previous case, except the complex phase factors ie* and
—ie in the argument of the transcendental function. De-
viation from ¢ = = /2 is known to occur in nondegenerate
two-wave mixing [see (46)]. Such a deviation for the case
of degenerate two-wave mixing has been observed in ox-
ide crystals such as BaTiO; and Srp ¢Bay (Nb,Og¢ [36].

For the special case of particular interest in which the
cubic crystal is sandwiched between a pair of cross po-
larizers, the boundary conditions are given by (8). Using
(71) and (75)-(78), we have f(0) = g(0) = 0,¢c3 = 0,
and o = 0, and the solutions become

f= q tanh (iegvyz/2)
2c, cos 6

_ qanh (ie*gyz/2)
& 2cy cos 8

(91)

where ¢ = 2V¢yc;.
Consider the special case of ¢ = 0. The solutions (91)
become

f=lqtan (gv2/2)
2¢, cos 8
_igtan (gv2/2)
& 2c, cos 6 (92)
Taking 6 = 0, and using (79), the intensity of the four
waves becomes

|4,1" = ¢, cos? (qv2/2)
|4,1" = ¢, sin® (qvz/2)
|B.|" = ¢; cos” (qv2/2)

|B,|* = c, sin? (¢y2/2) (93)

where ¢, = |4,(0)[%, c; = | B,(0)|%. Note that the in-
tensities of these waves are periodic functions of z. This
is distinctly different from the case when ¢ = /2. The
case of ¢ = 0 corresponds to a pure local response of the
material. Although the energy is exchanged back and forth
between A4, and B, as well as between A, and B,, there is
no nonreciprocal energy transfer. In other words, there is
no unique direction of energy flow as compared with the
case when ¢ # 0. For cases with 0 < |¢| < =, nonre-
ciprocal energy transfer is possible according to our so-




SC5544.FR
49

lutions (88) and (89) with maximum energy transfer at ¢
= t7/2.

C. Contradirectional Cross Coupling

Referring to Fig. 7(b), we consider a case of contradi-
rectional coupling which does not permit the parallel cou-
pling to occur. The two beams enter the crystal in such a
way that the grating wave vector is along the [001} di-
rection of the crystal. In this configuration, the unit vector
§ is parallel to [010] and the unit vectors p,, 7, are per-
pendicular to [010]. The amplitude of the induced index
grating ¢, can thus be written, according to (59),

010
e =n'ryl 1 0 O ]E¥
000

where E* js the amplitude of the space-charge field.
According to (62) and (94), and after few steps of al-
gebra, the coupling constants can be written

T,=T,,.=0
T, =T,, =T, =T,, = n'rgE* cos (6/2) (95)

where we assume that the beams enter the crystal sym-
metrically [see Fig. 7(b)] such that

Bi = =By = ~(2x/N)n cos (6/2). (96)

We now substitute (95) and (96) into the coupled equa-
tion (60). This leads 10

(94)

%AJ = yB,(AB! + A,B; cos 8)/I,

d » *

p B, = yA,(A'B, + A; B, cos 6)/I,

d * *

e A, = yB(A,B] + A,B; cos 6)/1,

d * *

Z B, = yA,(A] B, + Ay B, cos 8) /1, (97)

where we have taken ¢ = x /2, and v is real and is given
by
v = §(2x/N)n’ry E*. (98)
Notice that the coupled mode equation (97) is similar
to that of (67), except for the signs. The difference in signs
is due to the direction of propagation of the pump beam
(A;. A,). As a result of this difference, the total intensity
1, is no longer a constant. According to (97), (A A, +
A; A, — B! B, — B B,), which is proportional (o the net
Poynting power flow along the +z direction, is a constant
{37]. There are other constants of integration. These in-
clude

A,’A,—B:B,=(‘,
A;A’,"B:B,"Cz
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AA, — BB,
AB, - AB, = c,

€3

(99)

Because /, is not a constant. the integration of the cou-
pled equation (97) is not as simple as that of (67). As of
now, there is no closed form solution available. However,
numerical techniques can be used to integrate the coupled
equations.

For the case of no pump depletion, we may treat 4, and
A, as constants. In this case, the coupling equations for
B, and B, are identical to those of the codirectional cou-
pling, and the solutions are given by (85) and (86).

In summary, we have derived a general theory of the
coupling of polarized beams in cubic photorefractive
crystals. As a result of the optical isotropy of the crystal
and the tensor nature of the holographic photorefractive
grating . cross-polarization energy coupling occurs. Exact
solutions for the case of codirectional coupling are ob-
tained. Such cross-polarization coupling may be useful for
the suppression of background noises.

D. Cross-Polarization Two-Beam Coupling in GaAs
Crysials

Cross-polarization two-beam coupling has been ob-
served in GaAs crystals recently. The experimental re-
sults are in good agreement with the coupled-mode theory
presented earlier [31]-[33].

In a contradirectional two-beam coupling experiments
as described in [33]. 2 1.15 urm beam from a He-Ne laser
is split into two by a beam splitter. The two beams inter-
sect inside a liquid-encapsulated Czochralski (LEC)
grown, undoped, semiinsulating GaAs crystal from op-
posite sides of the (001 ) faces {see Fig. 7(b)]. The inter-
secting angle of two beams is approximately 168°. The
wave vector of the induced index grating is along the
[001] crystalline direction.

One beam, B, is polarized along the [010] direction (s-
polarization) using & polarizer, which fits the condition of
B,(0) = 0. The other beam, 4, is transmitted through
another polarizer (along the [ 100) direction), followed by
a half-wave plate, which is used to vary the polarization
of the pump beam. The power of beams A4 and B is 80
mW /cm? and 1 mW /cm?, respectively. The GaAs crystal

~is S mm thick. The gain coefficiem of the crysial mea.

sured with the regular beam-coupling configuration is
about 0.1 /cm. These values fit well with the conditions
of no beam A depletion and vL << 1, which are used to
derive (87). A mechanical chopper, which operates at 100
Hz, is used to modulate beam A. An analyzer is placed in
front of a Ge photodetector. The analyzer is used so that
the intensity of both the s and p components of transmitted
beam B can be measured. The signal from the photode-
tector was amplified by a current amplifier, whose output
can be used as the dc component of | B,(L){’. A lock-in
amplifier is used to measure the ac component of | B,(L)|?
and |B,(L)|%.

According to (87). the beam intensities can be written
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18,(1))" = |BO)[ 1 + (sin2¢)2L]  (100)
1B,(1)[ = |B.(0) [(cos ¥)'(2LY]  (101)

where | B,(0)1? is the intensity of beam Batz = Oand ¥
is the angle between the § vector and the polarization di-
rection of beam A. In addition, we have used the intensity
of beam A to be approximately equal to /, and neglected
the (yL)* term in the first equation of (87). There are sev-
eral interesting features in (87) which should be pointed
out. | B,(L)|?* may increase or decrease depending on the
polarization state of the pump beam A, whereas | B, ( L)
is an increasing function of yL. Both |B,(L)|* and
|B,(L)|? are independent of 6. The ac component of
| B,(L)|* has a function of sin 2y which has a maximum
at ¢ = 45° and a minimum of y = 135°, whereas
|B,(L}{ is a function of (cos ¥ )* and has maxima at ¥
= 0 and 180°. These features have been validated with
experimental data [33].

In addition, it is observed that the maximum value of
|B,(L) 12 is smaller than the maximum ac component of
| B,(L)|* by a factor of 0.052. From (100) and (101), it
is clear that the factor of 0.52 is vL. This leads to y =
0.104 /cm, which is practically the same as the vy of the
sample measured by a regular beam-coupling technique.

In codirectional interaction configurations, the output
of a CW Nd:YAG laser beam was used [31]. A laser
beam operating at 1.06 um was split into two by a beam
splitter and then recombined inside a semiinsulating (un-
doped) GaAs crystal. The beam diameter of both beams
was about 1 mm just before entering the crystal. The in-
tensities of the pump and the probe were about 1 W /cm’
and 10 mW /cm?, respectively, and the angle between the
beams was 90° outside the crystal. A neutral density filter
was used in the probe beam to achieve the desired inten-
sity ratio between the pump and the probe. The half-wave
plate A /2 was used in the pump beam to control the initial
mixture of the s and p components. Also, a chopper was
used to modulate the pump beam at about 100 Hz. Fi-
nally, the probe beam transmitted through the crystal was
analyzed by a polarizing beam splitter, and the p and s
components were simultaneously monitored indepen-
dently by two photodetectors. Various polarization states
of the pump beam were achieved by rotating the half-wave
plate, ‘while both | B,(L)|* and | B,(L)|? were monitored
simultaneously. There is good agreement between the ex-
perimental data and the theoretical calculations.

The coupling coefficient can be calculated from (100)
and (101). One can solve for the coupling yL by taking
the ratio of the measured value of { B,(L)|* and | B, (L)}
at ¢ = 0. Using the measuied interaction length L of 0.5
cm, we have calculated the cross-polarization coupling
coefficient 4 to be about 0.4 cm™'. This value is consis-
tent with the gain coefficient measured for parallel-polar-
ization coupling in the same sample. According to the
theory, the gain coefficients for both parallel- and cross-
polarization coupling should be the same. The coupling
coefficient of v = 2.6 cm™ ' has been observed recently
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in a sample of GaAs crystal [38]. Using moving fringes
in the GaAs/Cr crystal. an even higher coupling coeffi-
cient of y = 6 ~ 7 cm™' has also been reported [39].
Such coupling coefficients allow the possibility of net gain
(amplification) in two-wave mixing.

IV. KErr MEDIA

In the above discussion, we notice that the nonlocal re-
sponse (i.e., ¢ # 0) in photorefractive media plays a key
role in the nonreciprocal energy transfer. The existing
materials such as BaTiO;. LiNbO,, SBN, BSO, BGO, eic.
are very slow and are also effective only for visible light.
Photorefractive crystals such as GaAs, CdTe. GaP, InP,
and other semiconductors are faster and are also effective
in the near-IR spectral region [25]. [26]. However, for
high-power laser application. these solids are no longer
uscful. Gases or fluids. because of their optical isotropy
and local response, have never been considered as can-
didate materials for degenerate two-wave mixing. In what
follows, we show that nonlocal response in gases or fluids
can be antificially induced by applving an external field or
simply by moving the media. Using such a concept. gases
or fluids become the best candidate materials for high
power laser beam coupling. Energy coupling also occurs
in stationary media when the frequencies of the two beams
are properly detuned, as in SBS and SRS.

A. Two-Wave Mixing in Kerr Media

The concept of using moving gratings in local media
for energy coupling was first proposed in 1973 by a group
of Soviet scientists [41)-[44]). It was recognized that a
spatial phase shift between the index grating and the light
intensity pattern can be induced by moving the grating
relative to the medium. Such a spatial phase shift is a re-
sult of the inertia (temporal) of the hologram formation
process and leads to a nonreciprocal energy transfer. If
the formation time of the hologram is finite, a spatial phase
shift occurs when the intensity pattern is moving relative
to the medium. In addition to the phase shift, such a mo-
tion also leads to a decrease in the depth of modulation of
the induced index grating. Several possibilities of achiev-
ing such a spatial phase shift have been proposed. These
include moving the medium itself relative to a thermally
induced grating [41], using the Lorentz force to move free-
camrier grating in a semiconducting medium [45], and
nondegenerate two-wave mixing in which a frequency
shift between the beams results in a moving grating {46]-
{49]. It is impontant to note that a temporal phase shift
itself is not enough for energy coupling. The induced in-
dex grating must be physically shified in space relative to
the intensity pattern in order to achieve energy coupling.

It is known that the Kerr effect in gases or fluids is a
local effect. In media with local response (¢ = 0). there
is no steady-state transfer of energy between two lasers of
the same frequency. In what follows. we will show that
nonlocal response can be induced by moving the Kerr me-
dium relative to the beams. Such an induced nonlocal re-
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sponse is only possible when the matenal response time
7 is finite.

The propagation of electromagnetic waves in media
possessing a strong Kerr effect is one subject of long and
sustained interest. A number of interesting phenomena
manifest themselves at high incident beam powers. This
includes self-phase modulation. mode-locking and self-
focusing. The effect is described by a dependence of the
index of refraction on the electric field according to

n=n,+ mn{E) (102)

where n, is the index of refraction, n, is the Kerr coeffi-
cient (see Appendix A), and ( E° ) is the time average of
the varying electric field.

Consider the case of degenerate two-wave mixing. The
time average of the electric field, is given by

(E')y = E3[1 + cos (K - )] (103)

where we assume E, = 4; = A,. The index of refraction,
according to (102) and (103). is given by

(104)

Comparing (104) with (103). we note that the response is
local and there can be no energy coupling, even if n; is
complex.

Using the interference of two beams with different fre-
quencies, a moving fringe pattern can be obtained inside
the medium. As a result of the finite temporal response of
the material, a spatial phase shift exists between the in-
duced index grating and the intensity pattern. Such a finite
phase shift leads to energy transfer between the beams.
Coupled-mode analysis has been used to study the beam
coupling in these media [40]. In what follows, we de-
scribe the coupling of two beams with different frequen-
cies in the codirectional configuration.

Inside the Kerr medium. the two waves form an inter-
ference pattern which corresponds to a spatially periodic
variation of the time-averaged field ¢ E2). In a Kerr me-
dium, such a periodic intensity produces a volume grat-
ing. Thus, the problem we address is most closely related
to the phenomenon of self-diffraction from an induced
grating. The formulation of such a problem is very similar
to that of the holographic two-wave coupling in photore-
fractive crystals [8]. [9]). [12]. However, there exists a
fundamental difference between these two types of two-
wave mixing. In photorefractive media, the index modu-
lation is proportional to the contrast of the interference
fringes, whereas in Kerr media the index modulation is
directly proportional 1o the field strength. Thus, in Kerr
media the coupling strength is proportional to the beam
intensities, whereas in photorefractive media the coupling
strength is determined by the ratio of beam intensities.

Let the electric field of the two waves be written

n=n,+ nmEi]l + cos (K - )]

E =Aesplilfwt -k -7)] Jj=1.2 (105)

where w,’s are the frequencies and Eﬂ,‘s are the wave vec-
tors. In (105). we assume for simplicity that both waves
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are s-polarized and the medium is isotropic. We further
assume that no optical rotation is present in the material.
A, and A, are the amplitudes and are taken as functions
of z only for a steady-state situation. The z axis is taken
normal to the surface of the medium (see Fig. 9).

In the Kerr medium (from z = Qo z = L), these two
waves generate an interference pattern. Such a pattern is
traveling if w, # w;. This interference pattern is de-
scribed by ( E?), where E is the total electric field

E=E +E (106)
and the averaging is taken over a time interval T such that
I > 1, w,T>1 (107)

and
w - w|T<< 1 (108)

Using (E?) = } Re [E*E] and (105) and (106), we ob-
tain

(Ey = 4{{a, ] + 4] + aTaze =k 7

+A|A;e-um-i r't} (109)

where
Q=w - w (110)
K=k, -k, (111)

This interference pattern [(109)] induces a volume index
grating via the Kerr effect. In general, the index grating
will have a finite phase shift relative to the interference
pattern because of the time-varying nature of the pattern.
Thus, we can generalize (102) and write the index of re-
fraction including the fundamental components of the
Kerr-induced grating as

n=n,+ An, + i{n;,e"°A,"A;e"""''E it e}

(112)

where both ¢ and n, are real and An, is a uniform change
in index. Here again for the sake of simplicity we assume
a scalar grating. The phase ¢ indicates the degree to which
the index grating is temporally delayed (or spatially
shifted) with respect to the interference pattern. Generally
speaking, both n, and ¢ are functions of (1.

Here, n; exp (i¢) can be regarded as a complex Kerr
coefficient. The finite phase shift is a result of the finite
response of the material. A complex Kerr coefficient cor-
responds to a complex third-order nonlinear optical po-
larizability. It is known that the imaginary part of the
third-order nonlinear optical polarizability is responsible
for phenomena such as stimulated Brillouin scattering and
stimulated Raman scattering [3]. Thus, we expect that the
complex Kerr coefficient induced by moving gratings will
also lead to energy coupling between the two waves.

To illustrate the physical origin of such a finite phase
shift, we will now examine a classical model. In this
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Fig. 9. Schematic drawing of two-wave mixing in Kerr media.

model, we assume that the formation of the holographic
grating is instantaneous and the decay constant 7 is finite.
When the two waves are degenerate in frequency. a
steady-state nonlinear response is described by (102)
without phase shift. In the case of nondegenerate two-
wave mixing. the intensity fringe. as described by (109),
is moving in the nonlinear medium at a constant speed.
The steady-state value of the self-induced index change
must be derived from a treatment which considers the fi-
nite response time of the medium with respect to the dis-
placement speed. Let the decay of index change be ex-
ponential, then the steady-state index change can be
written

An = %nzo S (EX(r))e'" """ dr'  (113)

where n,, is the value of index change for the degenerate
case.
Integration of (113) yields the following expression for

ny, exp (i¢):

nyo
—. 114
1 + Q7 (114)

n, exp (i¢) =

Note that the finite phase shift is related to the motion of
the intensity pattern relative to the nonlinear medium. In
addition to the finite phase shift. the motion of the fringe
pattern relative to the medium also causes the index mod-
ulation to increase. According to (112) and (114), the in-
dex grating is spatially shifted relative to the intensity pat-
tem by

¢ = —tan”' (Q7) (115)

where we recall that 7 is the response time of the medium.
1) Codirectional Two-Wave Mixing: Now, by using
(112) for n and the scalar wave equation and by using the
parabolic approximation (i.e., slowly-varying ampli-
tudes), we can derive the following coupled equations:

d win,n, - 2

;:A, = = TS e "®|A:| A,

d wn, n. 2

— Ay = —i —= ¢”|A,| A, 3]
z4T i Clala (116)

where we assume that w. = w, = w, and k. is the z com-

nent of the wave vectors (i.e.. k. = k, cos 48 = k, cos
r:). The parameter 4 is the angle between the two beams.
In (116), we have neglected the term An,,.
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We now write
A =Vle™, A= JhLe™ (117)
where ¥, and ¢, are the phases of the amplitudes A, and

A,. respectively. Using (116) and (117), the coupled
equations (116) can be written as

d
d_zll = —ghl, - al,
d,
;—z“‘ = gl|12 - alz (118)
and
d
‘TZ%‘Blz
d
22¢‘2=31| (119)
where
=2 sine. 0=6<1x/2 (120)
g—)\cos(0/2)"zsm . =f<x
B=—  ncoso (121)
" Acos (6/2) 2608 @

In (118), we have added the attenuation term due to bulk
absorption. The parameter a is the absorption coefficient.
Note that beam 2 will be amplified, provided g/, > a,
according to (118). Also notice that the coupled equations
(118) are exactly identical to those of the stimulated Bril-
louin scattering and stimulated Raman scattering. Solu-
tions for the lossless case had been derived by previous
workers [2]. We now derive the solution for the case of
lossy nonlinear medium. Using the classical model men-
tioned above, beam 2 will gain energy from beam 1, pro-
vided that the phase shift ¢ is positive. Thus, according
to (115). the low-frequency beam will always see gain.
The coupled equations (118) can be integrated exactly,
and the solution is (see Appendix B)
1

1(z) = 1,(0) - AN e
1 +m'exp [1 (1 - e“")]
a
(122)
h(2) = 1,(0) L1 e
1 + mexp [l (1 - e’“)]
a
(123)
where m is the input beam ratio
= 10
= 1(0) (124)
and v is given by
v = g[1,(0) + 1(0)] (125)
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Substituting (122) and (123) for /, and /,, respectively,
into (119) and carrying out the integrations, we obtain

vi(2) = ¥41(0)

8 1+ m™!
= - log
& {l-i'm"exp[g(l—e'“‘)]}

(126)
and
¥2(2) — ¥,(0)
= -2iog Lt m :
g {l+mexp[£(l—e'°‘)]}
(127)

Note that according to (126) and (127), the phases of the
two waves are not coupled. In other words, these two
waves can exchange energy without any phase crosstalk.
Such a phenomenon has been known in stimulated Raman
scattering for some time. and can be employed to pump a
clean signal beam with an aberrated beam. Here, the re-
sult can be applied to more cases, including forward stim-
ulated Brillouin scattering.

If we neglect absorption (i.e., a = 0), then I,(z) is an
increasing function of z and /, (2) is a decreasing function
of z, according to (122) and (123), provided « is positive.
Transmittance for both waves for the lossless case, ac-
cording to (122) and (123), is

T = l|(L) _ 1 + m"
"V L(0) 1+ m Texp(yl)
Tz_lz(L)_ 1+m (128)

T h(0) 1+ mexp(yl)

where m is the incident intensity ratio m = [,(0)/1,(0).
Note that 7, > 1 and T, < 1 for positive . The sign of
v is determined by the sign of n, and the phase shift ¢.
Interestingly, these expressions are formally identical to
those of the photorefractive coupling. The major differ-
ence is that the y for Kerr media is proportional to the
total power density of the waves, according to (125).

Fig. 10 illustrates the intensity variation with respect to
z for the case when g = 10 cm/MW, a = 0.1 ¢cm™',
1,(0) = 100 kW /cm?, and /;(0) = 1 kW /cm?. Note that
even with the presence of absorption, the intensity of beam
2 increases as a function of z until z = /., where the gain
equals the loss. Beyond z = /., the intensities of both
beams are decreasing functions of z.

Similar results were obtained earlier by other workers
in a study of stimulated scattering of light from free car-
riers in semiconductors [50].

According to (114), (115), and (120), the gain coeffi-
cient g is a function of the frequency detuning and can be
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Fig. 10. Intensity variation with respect to 2 in the Kerr medium.

written

_ 2%y  -Qr
Acos (6/2) 1 + (Qr)

8 (129)

where we recall that 1 = w, — w, is the frequency detun-
ing and 7 is the grating decay time constant. We notice
that the gain coefficient is positive for the beam with lower
frequency provided that n,, is positive. Such a gain coef-
ficient is maximized at 7 = +1. Such a dependence on
frequency detuning can be used to measure the time con-
stant 7. Some experimental works will be discussed in
Section IV-E.

2) Contradirectional Two-Wave Mixing: We now con-
sider the case of contradirectional two-wave mixing in
which beam 1 enters the medium at z = 0, and beam 2
enters the medium at z = L. The coupled-mode equations
for the beam intensities can be obtained in a similar man-
ner and are written

d
‘Tz’l = ~ghl = ol
4t e gl + o (130)
> ghiy + al
where the intensity gain coefficient g is given by
2
x msing, v/2 <0 s x. (131)

€= Nsin(6/2)

We notice a slight difference between the two cases as
compared with (120) for the codirectional coupling. Here,
we recall that 8 is the angle between the positive direction
of the two wave vectors. Thus. for codirectional cou-
pling. the angle 8 is always less than 90°, whereas = /2
< 0 < x for the contradirectional coupling. This is a
result of the boundary condition in which we assume that
the waves and the medium are all of infinite extent in a
plane perpendicular to the z axis.

Solutions of (130) for the case of lossless medium are
given by
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W) _ _1-o
o)~ T=pe™
L(z) 1 -»
—_— = 132
L0) e = (132)

where ¢ and p are constants and are related to the inten-
sitiesatz = 0,

= b
1,(0)

o = 1,(0) = L(0). (133)

The constant ¢ may be regarded as the net power flux
through the medium.

The solutions of (132) are expressed in terms of /,(0)
and /;(0), which are not input intensities. In the contra-
directional coupling, we note that the incident intensities
are [,(0)and I,(L).

For interaction L, such that goL >> 1, the intensity
growth for beam 2 is exponential and is given by, accord-
ing to (124),

h(L) .

In SBS, 1, (L) is virtually zero and represents intensity of
noises or scattered light. The parameter p = 1,(0)/1,(0)
is the phase-conjugate reflectivity of the SBS process. It
is always less than unity for two reasons. First, in SBS
there is no beam 2 incident at z = L; therefore. p < 1 is
required by the conservation of energy. Second, the ex-
ponential gain per unit length go is proportional to the
power throughput. A reflectivity of p = 100 indicates a
zero power flux and consequently zero gain.

1,(0) = (134)

B. Electrostrictive Kerr Effects

The Kerr effect arises from several physical phenom-
ena. These include molecular orientation, molecular re-
distribution, third-order nonlinear polarizability [3], elec-
trostriction, and thermal changes. In liquids such as CS,,
contribution to the Kerr effect is dominated by the elec-
trostriction.

The coupling of two electromagnetic waves via elec-
trostriction has been known for some time and is respon-
sible for SBS. Although this subject has been studied ex-
tensively [51]. little attention has been paid to the
*‘photorefractive’’ nature of such a process, which, we
believe, can provide a great deal of insight into general-
izing the SBS process. For example, there exists a similar
spatial phase shift of 90° between the induced index grat-
ing and the light interference pattern in conventional SBS
{52]. Such a spatial phase shift of 90° is responsible for
the energy exchange between the incident wave and the
phase-conjugated wave in SBS. In addition, self-pumped
phase conjugation in BaTiO; crystals [53], [54] is very
similar to the phase conjugation in SBS [55]. {56]. The
spatial phase shift of 90° can be utilized in other SBS
configurations (e¢.g.. injected SBS at 6 = 180°). In this
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section, we investigate the photoinduced index grating in
nondegenerate two-wave mixing and focus our attention
on the complex Kerr coefficient and the spatial phase shift.

Basic equations for the electrostrictive coupling be-
tween photons and phonons have been formulated and
several theoretical papers on SBS have been published
[51]. Mast of the earlier work was concentrated on back-
ward-wave coupling. Very little attention was paid to co-
directional nondegenerate two-wave mixing. The mathe-
matical formulation of such a coupling in Kerr media
including material absorption has been recently solved and
is described in Section IV-A. In this section, we focus our
attention on the derivation of the photoinduced index grat-
ing as well as the relation between the photoelastic coef-
ficient and the electrostrictive constant.

The electrostrictive pressure in liquids is given by

p = ~{1(E") (135)

where ( E%) is the time average of the varying electric
field and is given by (109). and 4 is the electrostrictive
coefficient which is defined as

+(%)
Y=ep 3

where p is the density and e is the dielectric constant.

As a result of the electrostrictive pressure according to
(135) and (109), a density wave in the medium is gener-
ated. By solving the isothermal Navier-Stokes equation
(51] we obtain the complex amplitude of the induced den-
sity wave as

(136)

1 K’y .. s R
e — 5 A Aﬂ =K 7
207 - - aar, ' ¢
where 1z may be regarded as the resonance phonon fre-
quency and is given by

Ap = (137)

QB =K (138)

with v as the velocity of the acoustic wave. and T’y is the
inverse of the phonon lifetime and is given by

Ty =nK?/p

with 5 as the viscosity coefficient.

Using Ae = 2neoAn and the definition of the electro-
strictive coefficient equation (135), we obtain the linear
relation between the index grating and the density wave

v
2npeg

(139)

Ap. (140)
Using the complex number representation, the induced

index change can be written, according to (112),
An = nye'® A} A" KD (141)

Substituting (141) for An and (137) for Ap in (140), we
obtain the following expression for the complex Kerr coef-

ficient:

i® . -Ky’
dnpeo(° — 0 — iQT,)

ne (142)
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Note that this complex Kerr coefficient is a function of the
frequency difference between the two waves. At reso-
nance 1 = +(1z. the Kerr coefficient is purely imaginary.
indicating a 90° phase shift between the index grating and
the intensity pattern.

The complex Kerr coefficient derived above is different
from the traditional one used in self-focusing and self-
phase modulation as described in [61]. The Kerr coeffi-
cient measured in those experiments may be regarded as
the dc Kerr coefficient and is related to that of (142) by
putting @ = 0. Such a dc Kerr coefficient is written

72

143
4npz'2eo ( )

nm(=0)=

¢$=0

where we recall that ¢ is the acoustic velocity and p is the
density. At resonance (2 = +Q;). the Kerr coefficient
becomes, according to (142),

2

Y 2

— [ = =+
4npteg (I‘B> ¢ t7/2

where the sign + depends on the sign of @ = w; - w,.
According to (120) and (144), we note that gain coeffi-
cient g is positive when w, < w,. In other words, the
beam with lower frequency always gains.

Notice that the magnitude of the Kerr coefficient at res-
onance is increased by a factor of

(144)

N2Res =

(145)

which may be regarded as the Q parameter of the acoustic
oscillation.

This parameter Q depends on the phonon frequency and
thus depends on the angle between the two beams at
acoustic resonance. According to (138) and (139), we ob-
tain

ot
= —. 6
Q - (146)
The angular dependence is now obtained by using
K = 2k sin {6 (147)

where k = 2xn /) and 0 is the angle subtended by the
wave vectors of the beams. This leads to

pt 1

20k in 46

(148)

which can also be written

@ = QOsps (149)

sin {6

where Qgpgs is the Q parameter for backward SBS with §
= x. For liquids such as CS;, Qgps is of the order of 100.
This parameter increases as  becomes small and can reach
as high as 10 000.

According to (144) and (149), the gain coefficients at
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resonance also depend on the angle 6 between the beams.
For contradirectional coupling, the angular dependence is,
according to (149), (144), and (131).

8 = BsBs (150)

(sin 40)2

where we recall that x /2 < 6 < =, and ggp; is the gain
coefficient at 6 = x, and is given by (forl = @; — w, =
=)

_ 2x Y OB
8sps = Ve, o (ra>. (151)
For codirectional coupling. the angular dependence is

given by [according to (149), (144) and (120)]

8 = 8sss (152)
where gsps is given by (151) and 8 is less than x /2 but
greater than 0.

We note that the gain coefficient g increases signifi-
cantly for the codirectional case as @ decreases. This high
gain may be difficult to observe because the phonons gen-
erated by two-wave mixing tend to walk out of the inter-
action region and thus reduce the resonance enhancement.

The electrostrictive Kerr effect and the photoelastic ef-
fect are very similar in nature. Both are related to the
change of index of refraction as a result of the squeezing
of the medium. Consequently, these two coefficients are
related. Such a relationship has been derived [62) and is
given by

7
- n fopz

n, = 4B (153)

where B is the bulk modulus, p is the photoelastic coef-
ficient [1], and n is the index of refraction. Using the fol-

lowing relation:
B = p1? (154)

where p is the mass density and ¢ is the acoustic velocity,
the Kerr coefficient can also be written

ny = in.eM, (155)
or
n, = }EoM:‘ (156)
where M, and M, are the acoustooptic figures-of-merit [1],
6,2 72
="P =P
M, = ot M, preR (157)

C. Nonlinear Optical Bragg Scattering

Acoustooptic Bragg scattering is a well-known phe-
nomenon and has been widely used for beam steering.
beam modulation, frequency shifting, and other applica-
tions. It is a physical process in which an incident laser
beam is scattered from an acoustic field. The scattered
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beam is shifted in frequency by an amount which is ex-
actly the frequency of the acoustic field. In addition, the
scattered beam propagates along a new direction which is
determined by the Bragg condition [1].

If the Bragg cell is made of a nonlinear optical medium,
the traveling interference pattern formed by the incident
beam and the scattered beam may induce a volume index
grating. Such a volume index grating will then affect the
propagation of these two beams. If the optical nonlinear-
ity of the medium is due to the electrostrictive Kerr effect,
then an additional sound wave can be generated due to the
two-beam coupling. This additional sound wave is added
10 the applied acoustic field, and thus enhances the dif-
fraction efficiency under appropriate conditions.

From the quantum mechanical point of view, for each
photon scattered, there is one phonon generated or anni-
hilated depending on whether the frequency is down-
shifted or upshifted. In the case of frequency downshift,
there is one phonon generated for each photon scattered.
Thus the number of generated phonons is proportional to
the scattered intensity. For low intensity light, these ad-
ditional phonons are much smaller in number relative to
the phonons of the applied acoustic field. However, for
high-intensity laser beams, the number of generated pho-
nons can be much larger than those of the applied acoustic
field. The presence of these additional phonons effec-
tively enhances the acoustic field and thus increases the
diffraction efficiency.

Both acoustooptic Bragg scattering and nondegenerate
two-wave mixing in Kerr media have been individually
treated by previous scientists {1}, [40]. In addition, the
amplification of sound waves through the interaction of
two laser beams with different frequencies has been ob-
served experimentally [63]). The coupling between the
Bragg scattered beam and the incident beam due to Kerr
effect has recently been studied [64]. Such coupling leads
to nonlinear optical Bragg scattering. In a Bragg cell with
a low acoustic field, the diffraction efficiency may be low
at low optical intensity. When the optical intensity is
above some threshold, the phonon regenerative process
leads to an avalanche in which all the photons are dif-
fracted. Here, we describe a coupled-mode theory of the
nonlinear optical Bragg scattering in Kerr media. An ex-
act solution is obtained for the nonlinear diffraction effi-
ciency.

Consider the nondegenerate two-wave mixing in the
Bragg cell (see Fig. 11). If an acoustic field is applied
such that the wave A, is generated by scattering of the
incident wave A, from the sound wave, then the condition
Q = t oK is automatically satisfied provided that the wave
A, is incident along a direction which satisfies the Bragg
condition. Under these circumstances, the coupled-mode
equations that govern the propagation of these two waves
in the medium can be written

d .
d—:AI = —48|A2|2A| - lKAz (‘58)
d 2 . -
ZA, = ig|A,| 4, - ix"A, (159)
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Fig. 11. Schematic drawing of nonlinear Bragg scattering in Kerr media.

where x is the Bragg coupling constant [1] and g is the
Kerr intensity coupling constant given by (120).

Not: that the angle @ is twice the Bragg angle 85 (2k sin
6s = K ). The phase ¢ is either +90 or —90° depending
on the sign of @ = w, — w,. For the case when beam 2
is scattered with a frequency downshift (as shown in Fig.
11), the phase ¢ is +90°, indicating a gain for beam 2.

We again write

Al = JI_IC-N‘ Az = lze—,vl: (160)

where ¥, and y, are the phases of the amplitudes A, and
A,, respectively. Using (160), the coupled equations can
be written

I = 2Liy; = —ghl, — 2ikNI e ¥~
Ii - 2’2l¢5 = 81112 - 2ix'dlllze"(‘l—‘2\‘ (161)

respectively, where the prime indicates a differentiation
with respect to 2.

By rewriting « as x exp ( —ic) so that « is now a positive
number and splitting the real and imaginary parts, we ob-
tain

I, = =ghl, = 2xVL 1, sin Ay (162)
L = ghl, - 21,1, sin Ay (163)
and
Vi = x(L/1)"* cos Ay (164)
Vi = x(1,/1)'" cos Ay (165)
where
AV =y - ¥, + 0. (166)

These equations are very similar to those that describe
mode coupling in ring laser gyros [65], [66]. In fact, the
relative phase between the waves can be written, accord-
ing to (165), (166)

ay' = «[(1/B)"" = (/1)) cos a¥  (167)

which is similar to the well-known phase-coupling equa-
tions in ring laser gyros. In our case, since the wave 4,
is generated by Bragg scattering of the wave A, from the
acoustic field, it is legitimate to assume that the phase of
A, is connected to that of the incident wave A,. Thus

Ay =17/2, 3x/2 (168)
are good solutions of (167).

12
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For g = 0, exact solution of the coupled equations (158)
and (159), subject to the boundary condition of 4,(0) =
0, yields a relative shift of Ay = x /2. We will take this
as the proper solution to (167). Substitution of Ay = x/2
into (162) and (163) leads to

I = —ghly - 2kN1 1
= ghl, - 2xVI|1,. (169)

The coupled equation (169) can be integrated exactly,
and the solution is

oY

1,(z) = I cos® u
L(z) = Isin’u (170)

where / is the incident intensity at z = 0 (i.e., I, (2) =/
and 1;,(z) = O atz = 0), and u is given by [64]

tan (kzv1 - b?)

tanu = : (171)
-8 - bun (V1 - B)
with
gl AL
= e— = — 7
4x 4kl (172)

where ¥ = gl and L is the length of interaction. We note
that b is a dimensionless parameter which is the ratio of
Kerr coupling to Bragg coupling. Equation (171) is valid
for all values of b. When the magnitude of b becomes
greater than 1 (i.e., |b] > 1), V1 — b becomes

ivh? — 1and tan xzV1 — b’ becomes i tanh uzw/bi - 1.

We also note that « is a positive number as defined earlier.
The Kerr coupling constant g can be either positive or
negative depending on whether the frequency of beam 2
is downshifted or upshifted.

We now examine the intensity variation with respect to
2 for various values of b. For b > 1, I,(z) reaches its
maximum value / (100 percent energy transfer) at distance

zsuch that tanh (xzVd* — 1) = Vb* — 1/b. Beyond this
point, the intensity /,(z) decreases and reaches its asymp-
totic value of I/[2b(b — vb* ~ 1)] which becomes /
when b approaches infinity.

For b = 1, I,(z) reaches its maximum value /at z =
1/x. Beyond this point, the intensity /,(z) decreases and
reaches its asymptotic value of //2 at z = oo,

For0 < b < 1, I,(2) is a periodic function of z with
maximum value / at points when tan (xzv1 — b*) =

1 = b°/b. The minimum value of 1,(2) is zero, which
occurs when tan («z2v1 = b°) = 0. Note that maximum
or minimum occurs when I, /; = 0.

For -1 < b < 0, I;(2) is also a periodic function of
2 with maximum__value / at points when tan
(xzV1 = b)) = V1 - b’/b. Compared with the case 0
s b < 1, we note that it takes a longer interaction length
for I, to reach its maximum value because of the negative
Kerr coupling. Minimum value of /,(2) is zero which also
occurs when tan (xzV1 — b’) = 0.

Forb = -1, I,(2) is a monotonically increasing func-

tion of z with an asymptotic value of I,(z) = I/2 atz =
o. Forb < -1, I(2) is also a monotonically-increasin,
function of z with an asymptotic value of /;(z) = 1/(2b
- 2bvb" — 1) at z = . Fig. 12 plots the intensity of
I,(z) as a function 2 at various values of b.

We now examine the diffraction efficiency which is de-
fined as

h(L)

n == (173)

= sin’ u

as a function of intensity / (or b) for a given Bragg cou-
pling constant x and a length of interaction L. Fig. 13
plots the diffraction efficiency n as a function of the pa-
rameter b for various values of xL. We note that for b >
0 (or g >0) the diffraction efficiency # is an increasing
function of intensity and can reach nearly 100 percent at
high optical intensities. The enhancement in the diffrac-
tion efficiency due to strong Kerr coupling can be em-
ployed for the steering of high-power lasers.

When b >> 1 and bl >> 1, the asymptotic expres-
sion for the diffraction efficiency is, according to (171)
and (173)

n =1 — 4b% exp (—4«Lb). (174)

We note that the diffraction efficiency approaches 100
percent exponentially at large b (high intensity). When b
approaches —oo, the asymptotic form of the diffraction
efficiency is, according to (171) and (173)

1
Ll [1 - 2exp(-2eL]b])).

According to (172) and (174), for small L, high dif-
fraction efficiency occurs when yL >> 1 (orgiL >> 1),
which corresponds to the Kerr regime. However, the dif-
fraction efficiency is zero when «L = 0, according to (171)
and (173).

At b = 0, (173) reduces to n = sin’ L, which is the
familiar expression of the Bragg cell diffraction effi-
ciency.

For such nonlinear Bragg scattering to be seen, the Kerr
coupling constant must be comparable with the Bragg
coupling constant. Thus the parameter b must be of the
order of 1. If b = 1 is used as an example, the Kerr in-
tensity-coupling constant must be

(175)

gl = 4x.

We now take a Bragg coupling constant of x = 1 cm™’

as an example and use a nonlinear medium such as CS;.
From the data available in [51], the Kerr coupling con-
stant g for a Bragg angle of 5° (0 = 10°)is g = 1.5
cm/MW, and the radio frequency required is 640 MHz.
Thus, the optical intensity needed for observation of a sig-
nificant nonlinearity in Bragg scattering, according to the
above condition, is approximately 2.7 MW /cm?.

The results show that diffraction efficiency is a nonlin-
ear function of the optical intensity and can be greatly
enhanced by increasing the intensity of the optical wave.
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Fig. 13. Diffraction efficiency n as a function of the parameter b for var-
ious values of «L.

It can be used as a nonlinear device in which high-effi-
ciency diffraction only occurs when the optical intensity
is above a threshold.

D. SBS, SRS, and Photorefractive Two-Wave Mixing

Thus far we have discussed two-wave mixing in pho-
torefractive crystals and Kerr media. In photorefractive
two-wave mixing the frequency difference between the
two beams is zero or small (a few Hertz). For two-wave
mixing in Kerr media or stimulated Brillouin scattering
(SBS), the frequency difference can be as large as a few
gigahentz. Energy exchange between two beams also oc-
curs in stimulated Raman scattering (SRS) [2]. The fre-
quency difference between the beams in Raman scattering
is in the range of terahenz.

There are several common features among the three
types of two-wave mixing. All three types of wave mixing
show nonreciprocal energy exchange without phase cross-
talk. In fact, if we examine their coupled-mode equations
(15) and (116), we note that the mathematical formula-
tions are very similar. A fundamental difference exists be-
tween these types of two-wave mixing. In SBS and SRS,
the gain coefficient (125) is proportional to the total in-
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tensity, whereas the photorefractive gain coefficient is in-
dependent of the intensity. Thus, for high-power appli-
cations, SBS and SRS can be efficient means for beam
coupling. In addition, the frequencies of the idler wave
are very different. In SRS, the idler wave is optical
phonon. In SBS, the idler wave is acoustic phonon. Also,
in photorefractive two-wave mixing, the idler wave is a
holographic grating. As a result of the finite frequency of
the idler wave, the coupled waves in these three processes
are different in frequencies. For SBS and nondegenerate
two-wave mixing in photorefractive media, the frequency
difference is small so that the two waves propagate at vir-
tually the same speed. In SRS, the large Stokes shift may
lead to a significant difference in the phase velocity of the
two waves due to dispersion. This may result in a phase
mismatch in the wave coupling.

The coupled equations for stimulated Raman scattering
are identical to those of the stimulated Brillouin scatter-
ing. except for the possibility of dispersion. In fact, it is
known that, like SBS, SRS also exhibits phase conjuga-
tion [67]). The energy coupling in both SBS and SRS is
due to the imaginary part of the third-order dielectric sus-
ceptibility [2]. If we examine (10) and (13), we notice
that the energy coupling in photorefractive crystal is due
to the out-of-phase term of the index grating. This spatial
phase shift is 90° in crystals such as BaTiO;, which op-
erates by diffusion only. If we interpret the idler wave in
SBS and SRS as a traveling index grating, then the spatial
phase shift is also exactly 90° in resonant scattering [see
(142)].

In view of the above discussion, we may generalize the
meaning of photorefractive effect to include other phe-
nomena such as the Kerr effect. In other words, the gen-
eralized photorefractive effect is a phenomenon in which
a change of the index of refraction is induced by the pres-
ence of optical beams. Thus, we may view SBS and SRS
as nondegenerate photorefractive two-wave mixing in
nonlinear media.

E. Experimenial Work

It was shown ecarlier that energy transfer in two-wave
mixing requires a finite spatial phase shift between the
intensity pattern and the induced index grating. In Kerr
media where the response is local, such a spatial phase
shift can be induced by the use of moving gratings in the
medium. Thus, energy transfer is possible in nonde-
generate two-wave mixing in Kerr media.

Although the concept of using moving gratings in local
media for the energy coupling between two beams had
been suggested in the 1970°s [41])~[49], no experimental
results were reported until recently. In 1986, a steady
transfer of energy was observed in a two-wave mixing
experiment in atomic sodium vapor [68]. In that experi-
ment, a flash-pumped dye laser was used to pump a cell
of sodium vapor that was inserted into a ring resonator.
The laser frequency was detuned slightly from the sodium
D line. The parametric gain due to the two-wave mixing
leads to a unidirectional oscillation in a ring resonator.
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The frequency of the oscillating beam in the ring reso-
nator was measured and was found to be lower than that
of the pump beam. In a later experiment using a CW dye
laser, a frequency shift of several MHz's was measured
[69]. The frequency shift agrees with our theoretical re-
sult [see (120) and (115)), which indicates that the low-
frequency beam gets amplified when the Kerr coefficient
is positive. By tuning the frequency of the dye laser to the
other side of the D line, an opposite sign of the frequency
shift was observed. This indicates the reverse of sign of
the Kerr coefficient at this new frequency. In addition, the
frequency of oscillation and the intensity of oscillation are
functions of the cavity length. Oscillation ceases at cavity
lengths when the frequency shifts are less than 8 or more
than 50 MHz. Similar observations on the dependence on
cavity length were found in photorefractive unidirectional
ring resonators {70], [71].

In a two-wave mixing experiment, a fluorescent-doped
boric acid glass is used as the nonlinear material [72]. In
this experiment, a frequency shift of 0.1 Hz was induced
by reflecting one of the beams off a mirror that was trans-
lated at a constant velocity by a piezoelectric transducer
(PZT). By varying the frequency difference between the
beams and monitoring the change in intensity of the probe
beam, a time constant of 100 ms was measured. In a sim-
ilar experiment. a ruby crystal is used as the nonlinear
medium (73]. Energy coupling at a frequency shift of up
to 500 Hz was observed. A time constant of 3.4 ms was
determined by measuring the probe intensity at various
frequency shifts. In addition. a net gain (exceeding the
absorption and reflection loss) of more than 50 percent
was observed.

Recently, energy transfer between two coherent beams
in liquid ¢rystals has been observed by several workers
[74]. The energy exchange is due to the thin holograms
in the medium. In these configurations, the scattering of
light by the induced grating is in the Raman-Nath regime
due to the small interaction length. The presence of higher
order scattering terms results in a multiwave mixing that
leads to the energy transfer from the strong beam to the
weak beam. If the interaction length is increased, the en-
ergy transfer will decrease because the interaction will be
in the Bragg regime.

V. APPLICATIONS

The photorefractive coupling of two waves in elec-
trooptic crystals has a wide range of applications. These
include real-time holography, self-pumped phase conju-
gation (53], ring resonators {54], [70}, (71], (73], laser
gyros {72]. nonreciprocal transmission [76]. image am-
olification [20]. vibrational analysis [77). and image pro-
cessing [78], {79]). etc. Some of these applications will be
discussed in this section.

A. Photorefractive Resonators

The coherent signal beam amplification in two-wave
mixing can be used to provide parametric gain for unidi-
rectional oscillation in ring resonators. Such oscillation

has been observed by using a BaTiO, crystal pumped with
an argon ion or a HeNe laser [54). Unlike the conven-
tional gain medium (e.g., He-Ne), the gain bandwidth of
photorefractive two-wave mixing is very narrow (a few
hertz’s for BaTiO;; see also Fig. 4). Despite this fact, the
ring resonator can still oscillate over a large range of cav-
ity detuning. This phenomenon was not well understood
until a theory of photorefractive phase shift was devel-
oped [70]. The theory shows that oscillation can occur at
almost any cavity length despite the narrow-band nature
of two-wave mixing gain, provided the coupling is strong
enough. Such a theory is later verified experimentally by
studying the frequency of unidirectional ring oscillation
at various cavity detunings [71].

Referring to Fig. 14, we now investigate the oscillation
of a ring resonator in which a photorefractive crystal is
inserted. Let us focus our attention on the region occupied
by the photorefractive crystal and examine the gain due
to two-wave mixing. The results of nondegenerate two-
wave mixing derived in Section II-C can be used to ex-
plain the ring oscillation.

In a conventional ring resonator, the oscillation occurs
at those frequencies

(o

f=1fo+ N

(176)
which lie within the gain curve of the laser medium (e.g.,
He-Ne). Here, S is the effective length of a complete loop,
fois a constant, and N is an integer. For § < 30 cm, these
frequencies (176) are separated by the mode spacing ¢/§
2 1 GHz. Since the width of the gain curve for the con-
ventional gain medium is typically several GHz due prin-
cipally to Doppler broadening, oscillation can occur at
almost any cavity length S. On the contrary, if the band-
width of the gain curve is narrower than the mode spacing
¢/ S, then oscillation can sustain, provided the cavity loop
is kept at the appropriate length.

Unlike the conventional gain medium. the bandwidth
of photorefractive two-wave mixing is very narrow. Using
photorefractive crystals that operate by diffusion only,
e.g., BaTiO;, the coupling constant can be written, ac-
cording to (48)

Yo

T 1+ () (177)

Y

where v, is the coupling constant for the case of degen-
erate two-wave mixing (i.e., @ = w; — w; = 0) and is
given by

47 An,

Yo = Ncos (6/2) (178)

The parametric two-wave mixing gain is given by, ac-
cording to (50)

I)(L) _ ] +m ~al

&= 1,(0) T 1+ met

(179)
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Fig. 14. Schematic drawing of a unidirectional photorefractive ring reso-
nator.

where we recall that m is the input beam ratio m =
1,(0)/1,(0) and L is the length of interaction. Note that
amplification (g > 1) is possibie only when v > o and
m> (1 - e°t)/(e"°t — 7). Also note that g is an
increasing function of m (i.c., 3g/dm > 0) and g is an
increasing function of L, provided y > o and
m(y = a)}

(180)
a

L= 1ln [
Y

The gain as a function of frequency w, (or equivalently
as a function of @ = w; — w,), has been plotted in Fig.
4 for various values of m. Note that gain is significant
only when | w; = w, {7 < 1. For materials such as BaTiO,
and SBN, 7 is between 1 and 0.1 s. Thus, the gain band-
width is only a few hentz. In spite of such an extremely
narrow bandwidth, unidirectional oscillation can still be
observed easily at “*any’’ cavity length in ring resonators
using BaTiO; crystals as the photorefractive medium.
Such a phenomenon can be explained in terms of the ad-
ditional phase shift [(24) and (25)] introduced by the pho-
torefractive coupling. This phase shift is a function of the
oscillation frequency and is plotted in Fig. 15 as a func-
tion of f}r. For BaTiO; crystals with y, L > 4x, this phase
shift can vary from —x to += for a frequency drift of
Aflr = +1. Such a phase shift is responsible for the os-
cillation of the ring resonator which requires a round-trip
phase shift of an integer times 2x.

1) Oscillation Conditions: We now examine the
boundary conditions appropriate to a unidirectional ring
oscillator. At steady-state oscillation, the electric field
must reproduce itself, both in phase and intensity, after
cach round-trip. In other words, the oscillation conditions
can be written

A\{«+Skds=2Nr (181)

and

gR =1 (182)
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Fig. 15. Photorefractive phase shift Ay as a function of Q7 for various
values of m.

where Ay is the additional phase shift due to photorefrac-
tive coupling, the integration is over a round-trip beam
path, the parameter R is the product of the mirror reflec-
tivities, and g is the parametric gain of (179).

If we define a cavity detuning parameter AT as

(183)

where N’ is an integer chosen in such a way that AT lies
between ~x and + x, then the oscillation condition (181)
can be written

AT = 2N’z - Skds

Ay = AT + 2Mx (184)

where M is an integer. In other words, oscillation can be
achieved only when the cavity detuning can be compen-
sated by the photorefractive phase shift.

Equations (181) and (182) may be used to solve for the
two unknown quantities m = /,(0)/1,(0)and @ = w, —
w,. If we fix the pump intensity /,(0) and the pump fre-
quency w;, then (181) and (182) can be solved for the
osciliation frequency w, and the oscillation intensity
1,(0). Substituting (179) for g in (182) and using (25),
we obtain

Ay = -g In (Re™). (185)
This equation can now be used to solve for the oscillation
frequency Qr. For the case of pure diffusion, using (46)
for ¢, = x/2 and (19) and (20), we obtain from (185)

2AY - 2(AT + 2Mx)
al - InR alL - InR
where AT is the cavity detuning and is given by (183).

Substituting (179) for g in (182), we can solve for m and
obtain

Qr =

(186)

= II(O) = l - Re—d
L(0) Re™® — ¢t

Since m must be positive, we obtain from (187) the
threshold condition for oscillation

(187)
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yL > vy L = aL — InR (188)

where v, is the threshold parametric gain constant. Since
v is a function of frequency 2, (188) dictates that the par-
ametric gain is above threshold only in a finite spectral
regime. Using (177) for v, (188) becomes

|ar] < [AL—--l]m
ol ~—InR

where we recall that v, is the parametric gain at @ = w,
— w; = 0. Equation (189) defines the spectral regime

(189)

where the parametric gain v is above threshold (i.e., y >

).
We have thus far obtained expressions for the oscilla-

tion frequency [(186)] and the spectral regime where the
gain is above threshold. The ring resonator will oscillate
only when the oscillation frequency falls within this spec-
tral region. The oscillation frequency w; = w; + Q@ is
determined by (186), with AT being the cavity detuning
(183).

The same oscillation frequency must also satisfy (189).
Thus. we obtain the following oscillation condition:

2lay|
al —InR

which can also be written

[ YoL
al — In R

1]’/2, (190)

Yol > vL + 'ylL (ZA‘I/)2 = GL (191)
where v, is the threshold parametric gain of (188) for the
case when Ay = 0, and G, may be considered as the
threshold gain for the case when Ay # 0. According to
(191), the threshold gain increases as a function of the
cavity detuning AT'. The cavity detuning AT not only de-
termines the oscillation frequency {(186)], but also the
threshold gain G,.

The AT in (183) is the cavity detuning and is defined
between —x and x. However, the photorefractive phase
shift (25) can be greater than x. When this happens, the
unidirectional ring resonator may oscillate at more than
one frequency. These frequencies are given by (186), with
M=0, %1, £2, - -+, etc., and with their corresponding
threshold gain given by

GL =L+ 1LL [2(ay + ZMr)]z. (192)

In other words, for each cavity detuning AT, the ring res-
onator can support multimode oscillation, provided the
coupling constant v, is large enough. Fig. 16 shows the
oscillation intensity, as well as the oscillation frequency
as functions of cavity detuning AT. Note that for larger
7oL, the resonator can oscillate at almost any cavity de-
tuning AT, whereas for small y,L, oscillation occurs only
when the cavity detuning is limited to some small region
around AT" = 0.

In summary, ring oscillation occurs when the two-wave
mixing gain dominates cavity losses and the round-trip
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Fig. 16. Oscillation intensity as a function of cavity detuning Q7 for var-
ious values of 7.1

optical phase reproduces itself (to within an integer mul-
tiple of 2x). The condition on phase is unique because of
a significant contribution to the optical phase shift due to
nondegenerate photorefractive two-wave mixing. This
condition is satisfied at any cavity length if the oscillation
frequency is slightly detuned from the pump frequency,
since the photorefractive phase shift [(185)) depends on
the detuning. The frequency difference Q (= wy = w;)
between the pumping and oscillating beams can be written

0 = [2(AT + 2Mx)/74] (193)

where AT is the cavity-length detuning with respect to an
integer multiple of optical pump waves in the cavity, M
is an integer, 7 is the photorefractive time response, and
A represents the total cavity loss. There are threshold con-
ditions for oscillation involving cavity loss and gain (tak-
ing M to be zero):

9] s (1/7)(vL/4 - 1) (194)
|ar| = (4/2)(+L/4 - 1) (195)

where v is the degenerate two-wave mixing coupling coef-
ficient, L is the interaction length, and A = ~In (R7,T,)
(with R being the product of the reflectivities of the cavity
mirrors and output coupler; 7, is the transmission through
the photorefractive crystal accounting for the absorption,
Fresnel reflections, and scattering (or beam fanning); and
T, is the effective transmission through the pinhole aper-
ture).

This theory predicts that the unidirectional ring reso-
nator will oscillate at a frequency different from the pump
frequency by an amount directly proportional to the cav-
ity-length detuning. Furthermore, in a photorefractive
material with moderately low 7, the theory postulates a
threshold where oscillation will cease if the cavity detun-
ing (frequency difference) becomes too large. Such a the-
ory has been validated experimentally in a BaTiO, pho-
torefractive ring resonator [71].

The experiments performed to examine the above the-
ory will now be discussed in detail. Fig. 17 shows the
experimental setup. A single-mode argon-ion laser (514.5

12
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Fig. 17. Optical setup for the photorefractive unidirectional ring resonator
with variable cavity length. The beat frequency between the self-oscil-
lation and pump beams is derived from the motion of the interferograms
at D, or D, [71].

nm) is used to pump a BaTiO; crystal which is inserted
into a ring resonator. Two-wave mixing in BaTiO; pro-
vides the parametric gain needed for the oscillation in the
unidirectional ring cavity, formed by two planar mirrors
(M, and M,) and a planar beam splitter (BS;). The os-
cillation beam in the ring-cavity is sampled through the
output coupler BS,;, its intensity being detected at D, while
the beat frequency between it and the pumping beam is
determined using complementary fringe patterns formed
at detectors D, and D,. Without a ring-cavity pinhole ap-
enture, unidirectional oscillation can be observed at any
cavity length. However, dynamically unstable multiple
spatial modes are evident {80]. [81] in the fringe patterns
at D, and D;. To obtain a single mode (and clean fringe
patterns). a 200 um pinhole is placed in the ring cavity.
The basic premises of the theory [70] are verified by
siowly ramping the PZT voltage and observing the beat
frequency, along with the ring-cavity oscillation inten-
sity. Typical results are shown in Fig. 18(a) for an 80 mW
pump beam incident at 40° from the ¢ axis of BaTiO; and
at 20° from the oscillating beam (both angles are external
in air).

The intensity of the unidirectional oscillation versus
cavity length [Fig. 18(a)] indicates threshold gain condi-
tions [(194) and (195)}. The beat frequency between os-
cillating and pumping beams, as observed in the time
variation of the fringe-pattern intensity [Fig. 18(a)],
clearly corresponds to the position of the PZT - M,.
When M, is exactly at the correct position (chosen as the
origin), the fringe pattern is stationary, i.e.. there is no
frequency shift. As M, moves away from this origin, the
fringe motion becomes faster and the frequency difference
increases. Fig. 18(b) shows the linear dependence of the
frequency difference on cavity detuning with the ramping
period equal to 20 000 s for improved resolution.
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Fig. 18. Characteristics of the unidirectional self-oscillation as a function
of ring-cavity length (i.e.. PZT voltage or cavity detuning. where 100
percent implies a detuning of one full optical wave): (a) ring-cavity in-
tensity (right) and beat-frequency signature (left): (b) frequency differ-
ence between the self-oscillation and the pumping beam [71}.

The frequency difference changes sign as M, slowly
moves through the origin. The observed sign is consistent
with the sign of the phase shift between the light intensity
pattern and index modulation that determines the direc-
tion of energy exchange in two-wave mixing. The beat-
frequency signzture [Fig. 18(a)] is also a periodic func-
tion of PZT murror position. The observed beat-frequency
signature reproduces itself with a M, displacement of
every ~\/2, as expected (i.e., a cavity length detuning
periodicity of A). Experimentally. the frequency thresh-
old for oscillation is approximately a linear function of
the pumping-beam intensity. as shown in Fig. 19(a). Ac-
cording to Fig. 18(a). this frequency threshold is in-
versely proportional to 7, but 7 can be approximately pro-
portional to the inverse of the pump intensity (assuming
that the cavity intensity is negligible by comparison) when
the photoconductivities dominate [82]. Therefore, the ob-
served dependence [Fig. 19(a)] agrees with theory.

The oscillation conditions for the unidirectional ring
resonator are dependent on the two-wave mixing gain
(yL) in the photorefractive medium. «L is varied by ro-
tating the BaTiO; crystal with respect to the pumping and
oscillating beams [83). When the gain is too small, no
unidirectional oscillation is observed, regardless of ring-
cavity length. For yL just above threshold, two pro-
nounced differences are evident, contrasting with yL
large. First, the amount of cavity detuning that is accom-
modated before oscillation ceases is greatly reduced. Sec-
ond, the maximum frequency difference between the
pumping and oscillating beams is much less. The quan-
titative trends of these two effects are given in Fig. 19(b)
for a pump power of 80 mW.

The threshold oscillation conditions given in expres-
sions (194) and (195) agree with the data (Fig. 19(b)].
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Fig. 19. Oscillation threshold behavior for the unidirectional ring resona-
tor: (a) maximum beat frequency as a function of pumping-beam or ring-
cavity power along with a linesr fit (solid-line); (b) maximum beat fre-
quency (left) and cavity detuning (right) as a function of two-wave mix-
ing gain yL. where yL is related 1o the external angle that the pumping
beam makes the crystal’s ¢ axis as shown (1op scale). Note: the two solid
curves in (b) correspond to the evaluation of (194) and (195) as described
in text [71).

The solid curve associated with the left-hand scale of Fig.
19(b) is generated from (194) for4A = 5.1 and 7 = 0.53
s. This cavity-loss factor A is estimated independently
from R x 0.99 x 0.91 x 0.81 (for M,, M, and BS;,
respectively), 7, = 0.52, and 7, = 0.016 (for a cavity
length of 50 cm). Accumulating these contributions gives
A = 5.2, in excellent agreement with the observed §.1.
The right-hand scale of Fig. 19(b) shows the dependence
of threshold cavity detuning (i.e., the maximum detuning
that will still support self-oscillation) on 4L, along with
the prediction from (195). where AT is normalized by 2x.
Remarkable agreement is obtained using 4 = 5.1 from
Fig. 19(a) and no adjustable parameters.

The interdependence of the optical cavity length and
the beat frequency between the oscillating and pumping
beams is a general propenty of photorefractive resonators.
These results are not unique to the optical setup shown in
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Fig. 17. Similar behavior is observed with other config-
urations. First, the orientation of the BaTiO; crystal in
Fig. 17 can be altered so that the pumping and oscillating
beams enter the a face but in such a way that no self-
pumping occurs [53]. Second, the BaTiO, can be replaced
by crystals of strontium barium niobate [84], [85] (nomi-
nally undoped and cerium doped). Third, a linear reso-
nator (Fig. 20) can act as a self-pumped phase conjugator
[54]. The observed frequency shift of the phase-conjugate
beam is exactly twice that of the self-oscillation, which is
necessary to satisfy energy conservation for slightly-non-
degenerate four-wave mixing [86]. In all three variations,
the measured frequency differences correlate with cavity
length detuning. results equivalent to those shown in Fig.
18 are obtained.

In summary, the experimental results indicate that the
frequency difference between the oscillating and pumping
beams in the unidirectional ring resonator depends on the
optical cavity length. This dependence supports the the-
ory [70] that uses a photorefractive phase shift associated
with slightly-nondegenerate two-wave mixing to satisfy
the round-trip phase-oscillation condition for the reso-
nating beam. Similarly, the observed frequency shifts in
other photorefractive resonators, including self-pumped
phase conjugators, may also be explained by the same
mechanism. This is the subject of the next section.

B. Resonator Model of Self-Pumped Phase Conjugators

The theory of unidirectional photorefractive ring reso-
nators described in the previous section can be extended
to explain the phenomenon of self-pumped phase conju-
gation using BaTiO; crystals (sometimes referred to as the
cat mirror {53]). It is known that optical four-wave mix-
ing can be used to generate phase conjugated waves. In
sclf-pumped phase conjugation, no counterpropagating
beams are supplied externally to provide the pumps
needed in the four-wave mixing process. Ih addition, self-
pumped phase conjugators using photorefractive crystals
such as BaTiO; have received considerable atiention be-
cause of the relatively high reflectivities (e.g., 30-50 per-
cent) that can be easily achieved even with low-power
lasers {53], [54), (87]). There have been several models
developed for the self-pumped phase conjugation inside
BaTiO, crystals. These include backscattering via 2-k
gratings [55], [56]., two coupled interaction regions [57].
enhanced coupling via frequency-shifted waves [58],
time-dependent four-wave mixing [59]. and photovoltaic
contributions [60]. In what follows, we present a reso-
nator model of self-pumped phase conjugation. Such a
model explains the origin of phase conjugation inside a
BaTiO; crystal and also explains the frequency shift of
the order of +1 Hz [56]. {80], [89].

Referring to Fig. 21, we consider the incidence of a
laser beam into a cube of photorefractive cyrstal. The
crystal cube can be viewed as a dielectric optical cavity
which supports a multitude of modes. These modes are
trapped inside the crystal due to total internal reflection at
the surfaces. When a laser beam is incident into the crys-
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Fig. 21. Resonator mode! of self-pumped-phase conjugators.

tal, some of the modes may be excited, as a result of the
strong parametric gain due to two-wave mixing. In par-
ticular, ring oscillations such as those shown in Fig. 21
can be generated according to the theory developed ear-
lier. When the configuration of the resonance cavity rel-
ative to the incident laser beam support bidirectional os-
cillation, a phase-conjugate beam is generated via the
four-wave mixing process.

According to this theory, the frequency of oscillation
inside the crystal can be slightly detuned from that of the
pump beam. Let w be the frequency of the incident laser
beam: the frequency of the intermal oscillation can be
written

W =w+d (196)

where & is the frequency detuning and is on the order of
+ 1 Hz for BaTiO;. Note that this frequency detuning de-
pends on the path length of the ring oscillation inside the
crystal. The bidirectional oscillation provides the counter
propagating beams needed for the pump. As a result of
the conservation of energy, the phase conjugated beam
has a frequency of w + 26.

The resonator model presents a simple explanation of
the frequency shift observed in BaTiO, self-pumped phase
conjugators [56), [88), [89]). In addition, experimental
evidence indicates that internal oscillations inside the
crystal play a key role in the generation of phase conju-
gated waves [90].

C. Optical Nonreciprocity

We mentioned earlier that the energy transfer in two-
wave mixing may have application in optical nonreci-
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procity. We now discuss in some detail the nonreciprocal
intensity transmission and nonreciprocal phase shifts due
to two-wave mixing in photorefractive media. It is known
in linear optics that the transmittance as well as the phase
shift experienced by a light beam transmitting through a
dielectric layered medium is independent of the side of
incidence. This is known as the left- and right-incidence
theorem and is a result of the principle of reversibility
(91]. This theorem is no longer true when the photore-
fractive coupling is present. Such nonreciprocal transmit-
tance was first predicted by considering the coupling be-
tween the incident beam and the reflected beam inside a
slab of photorefractive medium [92). The reflected beam
is due to the dielectric discontinuity at the slab bounda-
ries. As a result of the photorefractive contradirectional
two-wave mixing, energy exchange occurs between the
incident and reflected beams. Such an energy exchange
leads to an asymmetry in the transmittance. Fig. 22 shows
the two transmittances as a function of the coupling con-
stant. Notice that a significant nonreciprocal transmit-
tance is present due 1o the photorefractive coupling. In the
extreme case of strong coupling (yL >> 1), the slab al-
most acts as a ‘‘one-way'’ window. Such nonreciprocal
transmission has been observed in BaTiO; and
KNbO; : Mn crystals in the visible spectral regimes [93],
[94].

In addition to the nonreciprocal intensity transmission,
there” exists a nonreciprocal phase shift in contradirec-
tional two-wave mixing according to (37), provided 8 #
0. Such nonreciprocal phase shifts may be useful in some
applications, including the biasing of ring laser gyros [66].
[751 [94]. In what follows, we consider the photorefrac-
tive coupling of the counterpropagating beams inside a
ring resonator.

Referring to Fig. 23, we consider the insertion of a thin
slab of photorefractive crystal into a ring resonator. The
photorefractive crystal is oriented such that nonreciprocal
transmission occurs. In the absence of the photorefractive
medium, the two oppositely-directed ring oscillators are
degenerate in frequency in an inertial frame. As a result
of the nonreciprocal transmission, the symmetry is broken
and the degeneracy is removed. Since this may lead to a
split in the frequency of oscillations, it provides a bias for
the ring laser gyro operation.

Using the result derived in Sections II-B and I1-C, we
obtain the following expression for the transmittance of
the two waves:

T = L(L) - 1+m™!
"7 L0) 1+ m T exp(ql)
Tz - 12(0) ‘ +m (197)

L(L) “T+m exp (=vL)

where m is the incident intensity ratio m w /,(0) /5 (L).
Note that 7; < 1 and 7, > 1 for positive 4. The sign of
v depends on the direction of the ¢ axis.

With I,(z) and 1;(2) given by (33), the phases ¥, and
¥ can be integrated directly from (31). The phase shifts
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Fig 23. Schematic drawing of a ning laser resonator filled with a photo-
refracuive crystal plate

in traversing through the medium are kL + ¢,(L) — ¥,(0)
and kL + ¥,(0) — y,(L) for waves E, and E,. respec-
tively. These two phase shifts are different by an amount
4 = ¥y(0) = ¥x(L) = [¥i(L) = ¥,(0)], which, ac-
cording to (31) is given by

L

A= -Sld(w. +yy) = -S sE=lig (198)

0 4] Iz+l|~

Note that this difference in phase shifts is zero when /5,(2)
= ],(2) between z = 0 and ; = L, which corresponds to
C = 0 in (33) (recall that /,(z) — 1,(2) = 2C]). Using
(33) and carrying out the integration in (198), we obtain
the following expression for this phase shift difference:
A=2‘y—ﬂlnTg—ﬁL (199)
where T, is the beam intensity transmittance given by
(197). Note that A can also be written as A = (28 /) log
T, + BL. For small couplings, i.c., yL << 1, this dif-
ference in phase shifts can be written approximately as
- m2
+ By ————
(1 +m)
whe:: we recall that m = 1,(0)/1,(L).
In a conventional ring laser gvro, the oscillation fre-
quency as well as the intensity are the sarme for two beams
in an inertial frame. The oscillation occurs at thos fre-

m~ 1
m+ 1

A=fL (200)

‘l Rockwell International

Science Center

IEEE JOURNAL OF QUANTUM ELECTRONICS. VOL 25. NO 3. MARCH 1989

quencies

= Ng N = integer (201)
which lie within the gain curve of the laser medium (e.g.,
He-Ne). Here S is the effective length of a complete loop
and M is a larger integer. For S < 30 cm, these frequen-
cies (201) are separated by the mode spacing ¢/S 2 |
GHz. Since the width of the gain curve is typically 1.5
GHz due to principally Doppler broadening, the gyro usu-
ally oscillates at a single longitudinal mode.

The oscillation intensity inside the laser cavity is deter-
mined by the gain as well as the loss and is given by [88]

lo = K(ga - 81) (202)

where « is the constant which depends on the laser me-
dium, g, is the unsaturated gain factor per pass, and g, is
the threshold gain factor. Note that both g, and g, are di-
mensionless. In a conventional ring resonator, the thresh-
old gain for both traveling waves is given by

& =al -InR (203)

where a is the loss constant (including bulk absorption
and scattering) and R is the product of the three-mirror
reflectivities.

In the presence of the photorefractive coupling. the un-
equal transmissivities make the threshold gain different
for the two waves which now become

g1=al-InTR g.=al -InTHR (204)

where 7| and 7, are the beam transmittances given by
(197). The difference in the threshold gain leads to a split
in the oscillation intensity. The fractional difference in the
oscillation intensity is given approximately by

lz—l|_ln:-lnT|= 'YL

12 + ll (go - 8:) 2(80 - gl).
If we now assume that the beam intensities are nearly uni-
form in the photorefractive material (i.e., yL << 1), the

difference in phase shift 4 can be written, according to
(198) and (205)

(205)

_ B!
2(8, - &)

This expression agrees with (200) provided (g, — g,)
<< 2, which is legitimate because ( g, — g,) is typically
on the order of 1077,

The unequal phase shift for the oppositely-directed
traveling waves corresponds to different effective optical
path lengths for the waves. This resuits in a difference Q
between the angular frequencies of the laser oscillation of
the two beams. The differenceisQ = w; — w, = —cA /S,
which can be written, according to (206), (19), and (20)

c =L 22 ,
- . 207
5 (s 50 T nisin @ cos ¢ (207)

A= (206)

Y]
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where we recall that ¢ is the relative phase shift between
the index grating and the interference pattern. We note
that £ is not zero provided sin ¢ cos ¢ # 0.

We now examine the angular frequency split { for var-
ious cases. For the pure diffusion case (i.e., no external
electric field) in photorefractive material, the phase shift
o is givenby ¢ = x/2 — tan~' Q7, according to (46).
Thus (207) becomes

_ ar¥(an) e
NS(g, — &) (1 + @7°)

which has three solutions. The trivial one is @ = 0. which
comresponds to an unsplit oscillation. The other roots are
given by

(208)

)~ l]l/:. (209)

qQ = L 127an, [ cr
R {

i S(g. — &

Taking 7 = 100 ms, § = 30cm. g, - g =001. L =1
mm, an, = 10”%, A = 0.6328 um, (209) yields @, = 10’
s~!, which corresponds to a frequency split of 160 Hz.
Whether the ring gyro will oscillate at the same frequency
(Q = 0) or with a split {1, or both, is a subject of mode
stability.

It is shown that there are three modes of oscillations.
The stability of these modes will determine the actual
mode of oscillation at steady state. To investigate this is-
sue, we need to examine the effect of small perturbation
on the oscillation frequencies. Using (207)and ¢ = 7 /2
- tan”' Q7, we consider that the frequency difference Q
is slightly deviated from the solution by 68. This 6Q2 will
change the holographic grating phase shift by é¢. Equa-
tion (207) will then yield the resulting frequency diifer-
ence ) + 40 after substituting ¢ + 8¢ for ¢ on the right-
hand side. The criterion for stable oscillation is

@)<o

Using (46) and (207), we can plot the right-hand side
of (207) as a function of f17. The solution of (207) can
then be obtained by drawing a straight line through the
origin with a slope of 1 /7. The intersections of the straight
line with the curve give the solutions of (207). The ratio
(d11/8Q) is proportional to the slope at the intersections.
We note that the solution at 2 = 0 has a positive slope
which indicates that this mode of oscillation is unstable
according to the criterion equation (210). The other two
solutions of (209) are stable because they have a negative
slope. Negative slope indicates that any deviation ¢Q
caused by perturbation will eventually damp out.

In summary, we found that if the crystal is acentric, the
nonlocal response of the crystal leads to unequal trans-
mittance and phase shifts of the two waves. These, in turn,
lead to a split in the oscillation intensity as well as oscil-
lation frequency. The frequency split may be utilized to
bias a laser gyro away from its lock-in region. In the above
derivation, the bulk absorption in the photorefractive ma-
terial is neglected. This is legitimate provided o << 7,

(210)
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which is generally true in most photorefractive crystals.
The attenuation in the crystal may affect the difference in
phase shift according to (198) because /. — /, is no longer
a constant. Numerical analysis is required to include the
attenuation and obtain a more accurate result.

D. Real-Time Holography and Beam Processing

We mentioned the holographic implications of two-
wave mixing in photorefractive media earlier. Let us now
claborate on this idea in some detail. The formation of an
index grating due to the presence of two coherent laser
beams inside a photorefractive crystal is formaily analo-
gous to the recording process in conventional holography.
Consider the procedure shown in Fig. 24(a). in which two
laser beams intersect and form an induced index grating.
The index grating, as given by (10), contains the product
of the amplitudes A, and A,. This index grating is a ho-
logram formed by a ‘‘reference’’ beam A4,. and an ‘‘ob-
ject’’ beam A;. The transmission function of such a ho-
logram can be written

t ~ An ~ A,'A;exp(—il?- r)
+ A AT exp (iK - F) (211)

where 4, and A, denote the complex amplitudes of the

-reference and object fields. respectively.

In the reconstruction step [see Fig. 24(b)]. the holo-
gram is illuminated by the reference beam A, exp ( ~ik,
+ 7). The diffracted beam can be written

(212)

where 5 is the diffraction efficiency. We notice that the
phase of A, cancels out and the diffracted beam is a re-
construction of the object beam A> exp (—ik, - 7). Sim-
ilarly the ‘‘reference’” beam 4, can be reconstructed by
illuminating the hologram with ‘“‘object’” beam A, [see
Fig. 24(c)). provided beam A is a phase object (i.e.. A,
has phase variation with | 4, | = constant).

In addition to the holographic analog. two-wave mixing
exhibits amplification which is a unique feature not avail-
able in conventional holography. Using these two prop-
erties, two-wave mixing can be used for beam processing.
As a result of the real-time holographic nature, photore-
fractive two-wave mixing exhibits nonreciprocal energy
transfer without any phase crosstalk {96}. This character-
istic can be seen directly by examining the coupled equa-
tions (17) and (18).

The lack of phase crosstalk can be understood also in
terms of the diffraction from the self-induced index grat-
ing in the photorefractive crystal. Normally. if a beam
that contains phase information ¥ (r. ¢} is diffracted from
a fixed grating. the same phase information also appears
in the diffracted beam. In self-induced index grating. the
phase information ¥ (r, r) is impressed onto the grating
in such a way that diffraction from such a grating will be
accompanied by a phase shift —~¢ (r. r). Such a dynamic
hologram makes self-cancellation of phase information

nA A Asexp (—ik, - 7)
P
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Fig. 24 Real-time holography

possible when the incident beam is diffracted from the
grating produced by the incident and the reference beams.
Such a self-cancellation of phase information is actually
equivalent to the reconstruction of the reference beam
when the hologram is read out by the object beam.

Energy transfer without phase crosstalk can be em-
ployed 1o compress both the spatial and the temporal
spectra of a light beam [97]. In other words. the energy
transfer without phase crosstalk can be utilized to clean
up both the spatial-wavefront and temporal wavefront ab-
errations. In what follows, we will describe separately the
cleanup of these two types of aberration.

In the cleanup of spatial aberration, a spatial mode filter
(e.g.. a pinhole mirror) is used to select a clean pant of
the aberrated beam. The rest of the beam consists of sev-
eral spatial-frequency components. After the separation,
these two portions of the beam are brought together at a
photorefractive crystal. Because of the energy transfer
without phase crosstalk, the signal beam can be amplified
without bearing any phase information from the aberrated
part of the beam.

The experimental configuration is shown schematically
in Fig. 25. An argon-ion laser beam with output power of
a few hundred milliwauts at 514.5 nm is used as the co-
herent light source. The polarization of the laser output is
rotated 90° into the plane of incidence so that the largest
effective electrooptic coefficient of the SBN crystal, es-
sentially ry,, czn be used. The beam splitter BS is used to
split the incoming beam into the pump and the signal
beams. which are mutually coherent. The beams are then
loosely focused onto the sample S by the focusing lenses
FL, and FL,. respectively. The average spot size of each
beam inside the sample is approximately 3 mm in diam-
eter. The sample used for the experiment was a crystal of
single ferroelectric domain of SBN witha 5 X 6 mm cross
section and a thickness of 6 mm. The external angle 6
subtended by the twe beams was approximately 10°.
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Fig. 25. Schematic disgram of the experimental setup for spatial wave-
front correction. For temporal wavefront correction. the phase distorter
(PD) is replaced by the set of mirrors shown in the inset. BS, beam
splitter; DL, diverging lens; FL. focusing lens: HP, half-wave plate
(5145 nm); M, plane mirvor; P, polarizer, PD, phase distoner; S, sam-
ple; SC, screen [96]).

The beam splitters BS, and BS, together with the mir-
rors M, and M, constitute a Mach-Zehnder interferometer
whose output fringe pattern represents the spatial phase
of the pump output. Similarly. the beam splitters BS, and
BSs and the mirrors M and M, constitute another inter-
ferometer for displaying the spatial phase of the signal
output. The diverging lenses DL, and DL, are used to
magnify the fringe pattern projected onto the screen SC.

Without the spatial phase distorter PD in the paths of
the beams, the fringes of each are concentric circles, rep-
resenting the spherical wavefront introduced by the con-
verging lenses FL, and FL,. Pictures of such fringes are
shown in Fig. 26(a). With the phase distorter PD (a2 mi-
croscope slide etched with hydrofiuoric acid) in the path
of the pump beam (see Fig. 25). the spatial wavefront of
the pump becomes strongly aberrated, as shown on the
lefi-hand side of Fig. 26(b). The wavefront of the ampli-
fied beam, however, remains essentially undistorted [the
right-hand side of Fig. 26(b)].

With the pump intensity on the order of 400 mW /cm?
(total power of the order of 30 mW ) and a signal-beam
intensity on the order of 8 mW /cm’. a signal gain (de-
fined as the ratio of signal output power with and without
the pump beam) of about 10 has been achieved with our
SBN sample, for the experimental configuration described
above, with no special care or optimization. For the case
corresponding to the pictures shown in Fig. 26, the signal
gain decreases from 10 to 7 as the phase aberrator is in-
troduced. Our experimental results clearly demonstrate
that energy transfer without phase crosstalk can be real-
ized by two-wave mixing in photorefractive media.

The cleanup of temporal aberration can be understood
in terms of nondegencrate two-wave mixing in photore-
fractive media. Let the frequencies of the two beams be
Sy and f;. respectively. In the photorefractive medium,
these two beams generate a traveling interference pattemn.
This interference pattern induces an index grating. The
index grating has a frequency of ( £z — fi). As a result of
the nonlocal response of the crystal, energy transfer oc-
curs that allows one beam to accept and the other beam
to donate energy. Note that when beam 2 is diffracted from
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Fig. 26. Interference fringes representing the spatial phase of the pump
output and the amplified signal output. (a) With no phase distorter in
both arms. (b) With phase distorter in the pump beam prior to entering

the photorefractive material [96).

the holographic grating. its frequency is shifted to f, be-
cause the index grating is traveling with a frequency of
( f» — f1). Thus photons of frequency f> can be converted
to photons of frequency f;. A temporally-aberrated beam
may be considered as a superposition of several frequency
components. Thus, by using a frequency filter to select a
single-frequency component and then to recombine it with
the rest of the beam at a photorefractive crystal. it is pos-
sible to clean up the temporal aberration of light beams.
In our experimental work, we use a piczoelectrically
driven mirror to introduce the temporal wavefront aber-
ration. The experimental setup is almost identical to that
used in the previous experiment except that the spatial
distorter PD (see Fig. 25) is now replaced by a temporal
phase modulator. As the mirror moves at a constant ve-
locity v, the frequency f of the pump beam is Doppler
shifted by an amount Af given by

Af = 2fv/c

where f is the original pump frequency, v is the lincar
velocity of the moving mirror, and ¢ is the velocity of
light in air. This frequency shift, or. equivalently, the
temporal phase modulation, is picked up by a detector at
the output port of the Mach-Zehnder interferometer. The
temporal phase variation of the pump outside with a fre-
quency modulation of 2 Hz is shown in the lower trace of
the oscillogram (Fig. 27). The corresponding temporal
phase variation of thc amplified signal, as picked up by a
similar detector, is represented by the upper trace of the
oscillogram. Notice that the temporal phase of the ampli-
fied signal is essentially unperturbed. The signal gain,
however, drops rapidly as the pump-modulation fre-
quency is increased. Experimental results for the signal

~-—SIGNAL

~=—PUMP

PUMP MODULATION FREQUENCY =~ 2Hz

Fig. 27. Temporal phase vanation of the pump output and amplified signal
output [96].

gain versus pump-modulation frequency at various pump
and signal power levels are given in Fig. 28.

The experiment described above can be viewed as a
nearly-degenerate two-wave mixing experiment with a
very small frequency offset (Af ) of a few hertz. The solid
lines in Fig. 28 represent the theoretical fits based on (48)
and (50) using the time constant 7 as the adjustable pa-
rameter. The dependence of the material time constant on
the input-beam intensity ratio and the total input intensity
can thus be deduced. A typical result is illustrated in Fig.
29. Note that the time constant is relatively insensitive to
input-beam intensity ratio.

In conclusion, we have demonstrated nonreciprocal en-
ergy transfer without phase crosstalk and have succeeded
in beam cleanup by using photorefractive two-wave mix-
ing in SBN crystals. Both spatial and temporal phase ab-
ercation of laser bcams can be cleaned up, provided that
the phase aberration does not change significantly over a
period that is the time constant of the material. The ho-
logram recording time 7 of SBN crystals is also obtained



SC5544.FR

‘l‘ Rockwell international

Science Center

si6 1IEEE JOURNAL OF QUANTUM ELECTRONICS. VOL 25. NO. 3. MARCH 1989

30

L)
GANGg « -::E-'

10]

% 1 3 i 1
PUMP MODULATION FREGUENCY (Hz!

Fig. 28. Signal gain versus pump modulation frequency at various pump
and signal power levels. 1,(0). signal input power; /,(0), pump input
power: /,(L), signal output power with pump beam on: / (L), signal
output power with pump beam off. O: /,(0) = 10 mW, /,(0) = 0.26
mW: 0: [,(0) = 10 mW. /,(0) = 2.5 mW: O: /,(0) = 200 mW,
L(0) = 0.4 mW; A: 1,(0) = 200 mW. /,(0) = 48 mW. The solid
lines are the theoretical fits with the time constant 7 as the adjustable
panameter {96].
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Fig. 29. Dependence of the time constant (hologram recording time) of
the SBN sample on total input power and the beam power ratio. /,(0),
signal input power; 1,(0). pump input power. m = /,(0)//,(0). C:
1,(0) = 10mW, 1,(0) = 0.26 mW, m = 40. 0: J,(0) = 10 mW, 1,(0)
=25mW, m=4.4:/,(0) = 100mW, /,(0) = 0.2 mW, m = 300,
®:/,(0)=100mW, /,(0) =24 mW. m = 4. C: [,(0) = 200 mW,
4L(0) = 0.4 mW. m = 500, A:/,(0) = 200 mW, /,(0) = 48 mW. m
= 4 [96].

experimentally. Although the physical mechanism is dif-
ferent from the Raman coupling, the phenomenon of en-
ergy exchange without phase crosstalk is similar to the
Raman beam cleanup [98)-[100].

The laser beam cleanup technique can also be used in
conjunction with a phase conjugation to correct for the
distortion due to crystal imperfection. Such a scheme has
been used to clean up laser beams using a SBN crystal for
two-wave mixing and a BaTiO; crystal as the conjugator
{101}

Two-wave mixing in nonlinear media can be used for
applications in optical information processing. The for-
mation of holograms (volume index grating) can be used
for the storage of three-dimensional information [12). The
nonreciprocal energy transfer can be used for the ampli-
fication of spatial images [77]. In the area of optical com-
puting, digital logic operation using two-beam coupling

1 1 A A i 1 A1 1 iy
80 100 120 140 180 130 200 220 240 280

in photorefractive materials has been proposed and dem-
onstrated (102]. Such logic operations use the nonlinear
phenomena of signal beam saturation and pump beam de-
pletion in two-wave mixing. In addition, the erasure of
hologram by a third beam can be used to control the effi-
ciency of two-beam coupling. Recently, the transient re-
sponse of the photorefractive effect was used for the time
differentiation of coherent optical images.

V1. CONCLUSIONS AND Discussions

In conclusions, we have considered the coupling of two
electromagnetic waves in various nonlinear media, in-
cluding photorefractive crystals, Kerr media, and cubic
semiconductors. The energy transfer as well as the phase
shift due to coupling were derived and discussed. The re-
sults were then used to understand the oscillation of pho-
torefractive ring resonators as well as the physical origin
of self-pumped conjugators. We also presented a coupled-
mode analysis of the coupling of two polarized beams in
cubic photorefractive crystals. Cross-polarization two-
beam coupling was discussed in some detail. In the last
part of the paper, we discussed several applications using
two-beam coupling in photorefractive crystals. These in-
clude ring laser gyros, real-time holography, beam pro-
cessing, and information processing.

APPENDIX A
Kerr COEFFICIENTS

A. Conversion Between Units and Definitions
The Kerr effect is traditionally described by a depen-
dence of the index of refraction on the electric field by
n=n,+n(E) (A1)

where n, is the index of refraction at E = 0, n, is the Kerr
coeflicient, and the brackets { ) stand for time-average.
Some workers adopted the following definition:

(A2)

where / is the intensity of electromagnetic radiation mea-
sured in units of W /m? in the MKS system of units. The
conversion from both definitions and between MKS and
ESU units is given in Table 1II. We note that

n=n,+ nl

I = ce(E?) (A3)
and
forE. 1ESU =3 x 10°V/m
for/ 1ESU = 107° W/m’

B. Relationship Between ny and x "’

The Kerr coefficient n, is also related to the third-order
dielectric susceptibility x . Here we derive the relation-
ship between them for isotropic media such as liquids or
gases. In addition to the CGS and MKS units, there are
several conventions used in the definition of x *’ (1], [2).
In this paper, we adopt the following definition of x'*:

P =ex"E + xVE (A4)
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TABLE Il
CoNVERSION TABLE FOR KERR COEFICIENTS

n-n,.+n:(E:) n=n_+n.l

ESU MKS (v/VY ESU MKS (m*/ W)
1 1/9 x 10°® 42 x 107" 4.2 x 10°
107" 1/9 x 10°'° 42 x 107" 4.2 x 107" (for CS;)

where P is the polarization and E is the electric field.
Using the complex number representation [1] for sinu-
soidal varying field such as the one given in (6), the com-
plex amplitude of the polarization at frequency w is

P(w) = ex'""E + 3/4 xE*EE. (AS)
If we rewrite (AS) as
P(w) = [ex'"" + 3/4 x'V'E*E)E (A6)
then the index of refraction can be written
e(n® — 1) = ¢x'" + 3/4 x'YE*E|E. (A7)
We now compare (A7) with
An = ny (E*) = 1/2n,E*E (A8)
and we obtain
m = g (A9)
APPENDIX B

The solution of the nonlinear coupled differential equa-
tions (118) and (119) is derived in this appendix.
By adding the two equations in (118) and carrying out
the integration, we obtain
I +1,=Cexp(-az) (B1)
where C is a constant equal to [,(0) + /.(0). Using (B1)
and (118), we can eliminate /, and obtain

L1+ (a+ gCem)1y = g1}

which is a Bernoulli equation and can be integrated di-
rectly. The solution is

ll(z)" = elP(:)d:{_g Se-lf(:id: + Crz (33)
where C’ is a constant of integration and P(z) is given by
P(z2) = a + gCe™ . (B4)

To simplify (B3), we need to use the following integral
formula:

(B2)

" 1 -
—ar + be ~® - — be -t
Se. dx pr e (BS)

Using (B4) and (BS5), (B3) can be written
Ce‘al

I(z) = (B6)

1 + CC exp [ —& gCexp (-az)]
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Putting z = o in (B6) and solving for C’', we obtain
, _ 15(0) [1 ]
= Cl,(O)cxP c‘{gC (B7)

where we recall that C = 1,(0) + /,(0). Using the defi-
nitions for m and vy from (124) and (125), respectively,
and (B7), I,(2) can be rewritten in the form of (122). The
solution for /,(z) can be obtained from (122) and (B1).
This completes the solution for /,(z) and I,(z).

Solutions for the phases ¥, and ¢, can be obtained by
substituting (122) and (123) for /,(z) and I,(z), respec-
tively, into (119) and carrying out the integration. The
process requires the following integral formula:

-ax

€

1 + Bexp [i A exp (-ax)}

dx

=%log {l + %cxp [—-l-‘A exp (-ax)B. (B8)

Using the expressions for /,(z) and /,(2) and the above
formula, we arrive at (126) and (127). This completes the
derivation of /,(z) and I5,(z).
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